DrugGEN / app.py
osbm's picture
Update app.py
7e143cc
raw
history blame
6.72 kB
import streamlit as st
import streamlit_ext as ste
from trainer import Trainer
import random
from rdkit.Chem import Draw
from rdkit import Chem
from rdkit.Chem.Draw import IPythonConsole
import io
from PIL import Image
class DrugGENConfig:
submodel='CrossLoss'
act='relu'
z_dim=16
max_atom=45
lambda_gp=1
dim=128
depth=1
heads=8
dec_depth=1
dec_heads=8
dec_dim=128
mlp_ratio=3
warm_up_steps=0
dis_select='mlp'
init_type='normal'
batch_size=128
epoch=50
g_lr=0.00001
d_lr=0.00001
g2_lr=0.00001
d2_lr=0.00001
dropout=0.
dec_dropout=0.
n_critic=1
beta1=0.9
beta2=0.999
resume_iters=None
clipping_value=2
features=False
test_iters=10_000
num_test_epoch=30_000
inference_sample_num=1000
num_workers=1
mode="inference"
inference_iterations=100
inf_batch_size=1
protein_data_dir='data/akt'
drug_index='data/drug_smiles.index'
drug_data_dir='data/akt'
mol_data_dir='data'
log_dir='experiments/logs'
model_save_dir='experiments/models'
# inference_model=""
sample_dir='experiments/samples'
result_dir="experiments/tboard_output"
dataset_file="chembl45_train.pt"
drug_dataset_file="akt_train.pt"
raw_file='data/chembl_train.smi'
drug_raw_file="data/akt_train.smi"
inf_dataset_file="chembl45_test.pt"
inf_drug_dataset_file='akt_test.pt'
inf_raw_file='data/chembl_test.smi'
inf_drug_raw_file="data/akt_test.smi"
log_sample_step=1000
set_seed=True
seed=1
resume=False
resume_epoch=None
resume_iter=None
resume_directory=None
class ProtConfig(DrugGENConfig):
submodel="Prot"
inference_model="experiments/models/Prot"
class CrossLossConfig(DrugGENConfig):
submodel="CrossLoss"
inference_model="experiments/models/CrossLoss"
class NoTargetConfig(DrugGENConfig):
submodel="NoTarget"
inference_model="experiments/models/NoTarget"
model_configs = {
"Prot": ProtConfig(),
"CrossLoss": CrossLossConfig(),
"NoTarget": NoTargetConfig(),
}
with st.sidebar:
st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
with st.expander("Expand to display information about models"):
st.write("""
### Model Variations
- **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
- **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
- **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
""")
with st.form("model_selection_from"):
model_name = st.radio(
'Select a model to make inference (DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein)',
('DrugGEN-Prot', 'DrugGEN-CrossLoss', 'DrugGEN-NoTarget')
)
model_name = model_name.replace("DrugGEN-", "")
molecule_num_input = st.number_input('Number of molecules to generate', min_value=1, max_value=100_000, value=1000, step=1)
seed_input = st.number_input("RNG seed value (can be used for reproducibility):", min_value=0, value=42, step=1)
submitted = st.form_submit_button("Start Computing")
if submitted:
# if submitted or ("submitted" in st.session_state):
# st.session_state["submitted"] = True
config = model_configs[model_name]
config.inference_sample_num = molecule_num_input
config.seed = seed_input
with st.spinner(f'Creating the trainer class instance for {model_name}...'):
trainer = Trainer(config)
with st.spinner(f'Running inference function of {model_name} (this may take a while) ...'):
results = trainer.inference()
st.success(f"Inference of {model_name} took {results['runtime']:.2f} seconds.")
with st.expander("Expand to see the generation performance scores"):
st.write("### Generation performance scores (novelty is calculated in comparison to the training dataset)")
st.success(f"Validity: {results['fraction_valid']}")
st.success(f"Uniqueness: {results['uniqueness']}")
st.success(f"Novelty: {results['novelty']}")
with open(f'experiments/inference/{model_name}/inference_drugs.txt') as f:
inference_drugs = f.read()
# st.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'DrugGEN-{model_name}_denovo_mols.smi', mime="text/plain")
ste.download_button(label="Click to download generated molecules", data=inference_drugs, file_name=f'DrugGEN-{model_name}_denovo_mols.smi', mime="text/plain")
st.write("Structures of randomly selected 12 de novo molecules from the inference set:")
# from rdkit.Chem import Draw
# img = Draw.MolsToGridImage(mol_list, molsPerRow=5, subImgSize=(250, 250), maxMols=num_mols,
# legends=None, useSVG=True)
generated_molecule_list = inference_drugs.split("\n")
selected_molecules = random.choices(generated_molecule_list,k=12)
selected_molecules = [Chem.MolFromSmiles(mol) for mol in selected_molecules]
# IPythonConsole.UninstallIPythonRenderer()
drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
drawOptions.prepareMolsBeforeDrawing = False
drawOptions.bondLineWidth = 1.
molecule_image = Draw.MolsToGridImage(
selected_molecules,
molsPerRow=3,
subImgSize=(250, 250),
maxMols=len(selected_molecules),
# legends=None,
returnPNG=False,
# drawOptions=drawOptions,
highlightAtomLists=None,
highlightBondLists=None,
)
print(type(molecule_image))
# print(type(molecule_image._data_and_metadata()))
molecule_image.save("result_grid.png")
# png_data = io.BytesIO()
# molecule_image.save(png_data, format='PNG')
# png_data.seek(0)
# Step 2: Read the PNG image data as a PIL image
# pil_image = Image.open(png_data)
# st.image(pil_image)
st.image(molecule_image)
else:
st.warning("Please select a model to make inference")