DrugGEN / gradio_app.py
osbm's picture
Update gradio_app.py
2a7ca7c
raw
history blame
6.39 kB
import gradio as gr
from trainer import Trainer
import PIL
from PIL import Image
import pandas as pd
import random
from rdkit import Chem
from rdkit.Chem import Draw
from rdkit.Chem.Draw import IPythonConsole
import shutil
class DrugGENConfig:
submodel='CrossLoss'
act='relu'
z_dim=16
max_atom=45
lambda_gp=1
dim=128
depth=1
heads=8
dec_depth=1
dec_heads=8
dec_dim=128
mlp_ratio=3
warm_up_steps=0
dis_select='mlp'
init_type='normal'
batch_size=128
epoch=50
g_lr=0.00001
d_lr=0.00001
g2_lr=0.00001
d2_lr=0.00001
dropout=0.
dec_dropout=0.
n_critic=1
beta1=0.9
beta2=0.999
resume_iters=None
clipping_value=2
features=False
test_iters=10_000
num_test_epoch=30_000
inference_sample_num=1000
num_workers=1
mode="inference"
inference_iterations=100
inf_batch_size=1
protein_data_dir='data/akt'
drug_index='data/drug_smiles.index'
drug_data_dir='data/akt'
mol_data_dir='data'
log_dir='experiments/logs'
model_save_dir='experiments/models'
# inference_model=""
sample_dir='experiments/samples'
result_dir="experiments/tboard_output"
dataset_file="chembl45_train.pt"
drug_dataset_file="akt_train.pt"
raw_file='data/chembl_train.smi'
drug_raw_file="data/akt_train.smi"
inf_dataset_file="chembl45_test.pt"
inf_drug_dataset_file='akt_test.pt'
inf_raw_file='data/chembl_test.smi'
inf_drug_raw_file="data/akt_test.smi"
log_sample_step=1000
set_seed=True
seed=1
resume=False
resume_epoch=None
resume_iter=None
resume_directory=None
class ProtConfig(DrugGENConfig):
submodel="Prot"
inference_model="experiments/models/Prot"
class CrossLossConfig(DrugGENConfig):
submodel="CrossLoss"
inference_model="experiments/models/CrossLoss"
class NoTargetConfig(DrugGENConfig):
submodel="NoTarget"
inference_model="experiments/models/NoTarget"
model_configs = {
"Prot": ProtConfig(),
"DrugGEN": CrossLossConfig(),
"DrugGEN-NoTarget": NoTargetConfig(),
}
def function(model_name: str, mol_num: int, seed: int) -> tuple[PIL.Image, pd.DataFrame, str]:
'''
Returns:
image, score_df, file path
'''
config = model_configs[model_name]
config.inference_sample_num = mol_num
config.seed = seed
trainer = Trainer(config)
scores = trainer.inference() # create scores_df out of this
score_df = pd.DataFrame(scores, index=[0])
old_model_names = {
"DrugGEN": "CrossLoss",
"DrugGEN-NoTarget": "NoTarget",
}
output_file_path = f'experiments/inference/{old_model_names[model_name]}/inference_drugs.txt'
import os
new_path = f'{model_name}_denovo_mols.smi'
os.rename(output_file_path, new_path)
with open(new_path) as f:
inference_drugs = f.read()
generated_molecule_list = inference_drugs.split("\n")
rng = random.Random(seed)
selected_molecules = rng.choices(generated_molecule_list,k=12)
selected_molecules = [Chem.MolFromSmiles(mol) for mol in selected_molecules]
drawOptions = Draw.rdMolDraw2D.MolDrawOptions()
drawOptions.prepareMolsBeforeDrawing = False
drawOptions.bondLineWidth = 0.5
molecule_image = Draw.MolsToGridImage(
selected_molecules,
molsPerRow=3,
subImgSize=(400, 400),
maxMols=len(selected_molecules),
# legends=None,
returnPNG=False,
drawOptions=drawOptions,
highlightAtomLists=None,
highlightBondLists=None,
)
return molecule_image, score_df, new_path
with gr.Blocks() as demo:
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("# DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
with gr.Row():
gr.Markdown("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868)")
gr.Markdown("[![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
with gr.Accordion("Expand to display information about models", open=False):
gr.Markdown("""
### Model Variations
- **DrugGEN**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
- **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
""")
model_name = gr.Radio(
choices=("DrugGEN", "DrugGEN-NoTarget"),
value="DrugGEN",
label="Select a model to make inference",
info=" DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein"
)
num_molecules = gr.Number(
label="Number of molecules to generate",
precision=0, # integer input
minimum=1,
value=1000,
maximum=10_000,
)
seed_num = gr.Number(
label="RNG seed value (can be used for reproducibility):",
precision=0, # integer input
minimum=0,
value=42,
)
submit_button = gr.Button(
value="Start Generating"
)
with gr.Column(scale=2):
scores_df = gr.Dataframe(
label="Scores",
headers=["Runtime (seconds)", "Validity", "Uniqueness", "Novelty (Train)", "Novelty (Inference)"],
)
file_download = gr.File(
label="Click to download generated molecules",
)
image_output = gr.Image(
label="Structures of randomly selected 12 de novo molecules from the inference set:"
)
# ).style(
# height=200*4,
# width=200*3,
# )
submit_button.click(function, inputs=[model_name, num_molecules, seed_num], outputs=[image_output, scores_df, file_download], api_name="inference")
demo.queue(concurrency_count=1)
demo.launch()