DrugGEN / train.py
gyigit's picture
refactor
4c9e6d9
raw
history blame
22.5 kB
import os
import time
import random
import pickle
import argparse
import os.path as osp
import torch
import torch.utils.data
from torch import nn
from torch_geometric.loader import DataLoader
import wandb
from rdkit import RDLogger
torch.set_num_threads(5)
RDLogger.DisableLog('rdApp.*')
from src.util.utils import *
from src.model.models import Generator, Discriminator, simple_disc
from src.data.dataset import DruggenDataset
from src.data.utils import get_encoders_decoders, load_molecules
from src.model.loss import discriminator_loss, generator_loss
class Train(object):
"""Trainer for DrugGEN."""
def __init__(self, config):
if config.set_seed:
np.random.seed(config.seed)
random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
os.environ["PYTHONHASHSEED"] = str(config.seed)
print(f'Using seed {config.seed}')
self.device = torch.device("cuda" if torch.cuda.is_available() else 'cpu')
# Initialize configurations
self.submodel = config.submodel
# Data loader.
self.raw_file = config.raw_file # SMILES containing text file for dataset.
# Write the full path to file.
self.drug_raw_file = config.drug_raw_file # SMILES containing text file for second dataset.
# Write the full path to file.
# Automatically infer dataset file names from raw file names
raw_file_basename = osp.basename(self.raw_file)
drug_raw_file_basename = osp.basename(self.drug_raw_file)
# Get the base name without extension and add max_atom to it
self.max_atom = config.max_atom # Model is based on one-shot generation.
raw_file_base = os.path.splitext(raw_file_basename)[0]
drug_raw_file_base = os.path.splitext(drug_raw_file_basename)[0]
# Change extension from .smi to .pt and add max_atom to the filename
self.dataset_file = f"{raw_file_base}{self.max_atom}.pt"
self.drugs_dataset_file = f"{drug_raw_file_base}{self.max_atom}.pt"
self.mol_data_dir = config.mol_data_dir # Directory where the dataset files are stored.
self.drug_data_dir = config.drug_data_dir # Directory where the drug dataset files are stored.
self.dataset_name = self.dataset_file.split(".")[0]
self.drugs_dataset_name = self.drugs_dataset_file.split(".")[0]
self.features = config.features # Small model uses atom types as node features. (Boolean, False uses atom types only.)
# Additional node features can be added. Please check new_dataloarder.py Line 102.
self.batch_size = config.batch_size # Batch size for training.
self.parallel = config.parallel
# Get atom and bond encoders/decoders
atom_encoder, atom_decoder, bond_encoder, bond_decoder = get_encoders_decoders(
self.raw_file,
self.drug_raw_file,
self.max_atom
)
self.atom_encoder = atom_encoder
self.atom_decoder = atom_decoder
self.bond_encoder = bond_encoder
self.bond_decoder = bond_decoder
self.dataset = DruggenDataset(self.mol_data_dir,
self.dataset_file,
self.raw_file,
self.max_atom,
self.features,
atom_encoder=atom_encoder,
atom_decoder=atom_decoder,
bond_encoder=bond_encoder,
bond_decoder=bond_decoder)
self.loader = DataLoader(self.dataset,
shuffle=True,
batch_size=self.batch_size,
drop_last=True) # PyG dataloader for the GAN.
self.drugs = DruggenDataset(self.drug_data_dir,
self.drugs_dataset_file,
self.drug_raw_file,
self.max_atom,
self.features,
atom_encoder=atom_encoder,
atom_decoder=atom_decoder,
bond_encoder=bond_encoder,
bond_decoder=bond_decoder)
self.drugs_loader = DataLoader(self.drugs,
shuffle=True,
batch_size=self.batch_size,
drop_last=True) # PyG dataloader for the second GAN.
self.m_dim = len(self.atom_decoder) if not self.features else int(self.loader.dataset[0].x.shape[1]) # Atom type dimension.
self.b_dim = len(self.bond_decoder) # Bond type dimension.
self.vertexes = int(self.loader.dataset[0].x.shape[0]) # Number of nodes in the graph.
# Model configurations.
self.act = config.act
self.lambda_gp = config.lambda_gp
self.dim = config.dim
self.depth = config.depth
self.heads = config.heads
self.mlp_ratio = config.mlp_ratio
self.ddepth = config.ddepth
self.ddropout = config.ddropout
# Training configurations.
self.epoch = config.epoch
self.g_lr = config.g_lr
self.d_lr = config.d_lr
self.dropout = config.dropout
self.beta1 = config.beta1
self.beta2 = config.beta2
# Directories.
self.log_dir = config.log_dir
self.sample_dir = config.sample_dir
self.model_save_dir = config.model_save_dir
# Step size.
self.log_step = config.log_sample_step
# resume training
self.resume = config.resume
self.resume_epoch = config.resume_epoch
self.resume_iter = config.resume_iter
self.resume_directory = config.resume_directory
# wandb configuration
self.use_wandb = config.use_wandb
self.online = config.online
self.exp_name = config.exp_name
# Arguments for the model.
self.arguments = "{}_{}_glr{}_dlr{}_dim{}_depth{}_heads{}_batch{}_epoch{}_dataset{}_dropout{}".format(self.exp_name, self.submodel, self.g_lr, self.d_lr, self.dim, self.depth, self.heads, self.batch_size, self.epoch, self.dataset_name, self.dropout)
self.build_model(self.model_save_dir, self.arguments)
def build_model(self, model_save_dir, arguments):
"""Create generators and discriminators."""
''' Generator is based on Transformer Encoder:
@ g_conv_dim: Dimensions for MLP layers before Transformer Encoder
@ vertexes: maximum length of generated molecules (atom length)
@ b_dim: number of bond types
@ m_dim: number of atom types (or number of features used)
@ dropout: dropout possibility
@ dim: Hidden dimension of Transformer Encoder
@ depth: Transformer layer number
@ heads: Number of multihead-attention heads
@ mlp_ratio: Read-out layer dimension of Transformer
@ drop_rate: depricated
@ tra_conv: Whether module creates output for TransformerConv discriminator
'''
self.G = Generator(self.act,
self.vertexes,
self.b_dim,
self.m_dim,
self.dropout,
dim=self.dim,
depth=self.depth,
heads=self.heads,
mlp_ratio=self.mlp_ratio)
''' Discriminator implementation with Transformer Encoder:
@ act: Activation function for MLP
@ vertexes: maximum length of generated molecules (molecule length)
@ b_dim: number of bond types
@ m_dim: number of atom types (or number of features used)
@ dropout: dropout possibility
@ dim: Hidden dimension of Transformer Encoder
@ depth: Transformer layer number
@ heads: Number of multihead-attention heads
@ mlp_ratio: Read-out layer dimension of Transformer'''
self.D = Discriminator(self.act,
self.vertexes,
self.b_dim,
self.m_dim,
self.ddropout,
dim=self.dim,
depth=self.ddepth,
heads=self.heads,
mlp_ratio=self.mlp_ratio)
self.g_optimizer = torch.optim.AdamW(self.G.parameters(), self.g_lr, [self.beta1, self.beta2])
self.d_optimizer = torch.optim.AdamW(self.D.parameters(), self.d_lr, [self.beta1, self.beta2])
network_path = os.path.join(model_save_dir, arguments)
self.print_network(self.G, 'G', network_path)
self.print_network(self.D, 'D', network_path)
if self.parallel and torch.cuda.device_count() > 1:
print(f"Using {torch.cuda.device_count()} GPUs!")
self.G = nn.DataParallel(self.G)
self.D = nn.DataParallel(self.D)
self.G.to(self.device)
self.D.to(self.device)
def print_network(self, model, name, save_dir):
"""Print out the network information."""
num_params = 0
for p in model.parameters():
num_params += p.numel()
if not os.path.exists(save_dir):
os.makedirs(save_dir)
network_path = os.path.join(save_dir, "{}_modules.txt".format(name))
with open(network_path, "w+") as file:
for module in model.modules():
file.write(f"{module.__class__.__name__}:\n")
print(module.__class__.__name__)
for n, param in module.named_parameters():
if param is not None:
file.write(f" - {n}: {param.size()}\n")
print(f" - {n}: {param.size()}")
break
file.write(f"Total number of parameters: {num_params}\n")
print(f"Total number of parameters: {num_params}\n\n")
def restore_model(self, epoch, iteration, model_directory):
"""Restore the trained generator and discriminator."""
print('Loading the trained models from epoch / iteration {}-{}...'.format(epoch, iteration))
G_path = os.path.join(model_directory, '{}-{}-G.ckpt'.format(epoch, iteration))
D_path = os.path.join(model_directory, '{}-{}-D.ckpt'.format(epoch, iteration))
self.G.load_state_dict(torch.load(G_path, map_location=lambda storage, loc: storage))
self.D.load_state_dict(torch.load(D_path, map_location=lambda storage, loc: storage))
def save_model(self, model_directory, idx,i):
G_path = os.path.join(model_directory, '{}-{}-G.ckpt'.format(idx+1,i+1))
D_path = os.path.join(model_directory, '{}-{}-D.ckpt'.format(idx+1,i+1))
torch.save(self.G.state_dict(), G_path)
torch.save(self.D.state_dict(), D_path)
def reset_grad(self):
"""Reset the gradient buffers."""
self.g_optimizer.zero_grad()
self.d_optimizer.zero_grad()
def train(self, config):
''' Training Script starts from here'''
if self.use_wandb:
mode = 'online' if self.online else 'offline'
else:
mode = 'disabled'
kwargs = {'name': self.exp_name, 'project': 'druggen', 'config': config,
'settings': wandb.Settings(_disable_stats=True), 'reinit': True, 'mode': mode, 'save_code': True}
wandb.init(**kwargs)
wandb.save(os.path.join(self.model_save_dir, self.arguments, "G_modules.txt"))
wandb.save(os.path.join(self.model_save_dir, self.arguments, "D_modules.txt"))
self.model_directory = os.path.join(self.model_save_dir, self.arguments)
self.sample_directory = os.path.join(self.sample_dir, self.arguments)
self.log_path = os.path.join(self.log_dir, "{}.txt".format(self.arguments))
if not os.path.exists(self.model_directory):
os.makedirs(self.model_directory)
if not os.path.exists(self.sample_directory):
os.makedirs(self.sample_directory)
# smiles data for metrics calculation.
drug_smiles = [line for line in open(self.drug_raw_file, 'r').read().splitlines()]
drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
if self.resume:
self.restore_model(self.resume_epoch, self.resume_iter, self.resume_directory)
# Start training.
print('Start training...')
self.start_time = time.time()
for idx in range(self.epoch):
# =================================================================================== #
# 1. Preprocess input data #
# =================================================================================== #
# Load the data
dataloader_iterator = iter(self.drugs_loader)
wandb.log({"epoch": idx})
for i, data in enumerate(self.loader):
try:
drugs = next(dataloader_iterator)
except StopIteration:
dataloader_iterator = iter(self.drugs_loader)
drugs = next(dataloader_iterator)
wandb.log({"iter": i})
# Preprocess both dataset
real_graphs, a_tensor, x_tensor = load_molecules(
data=data,
batch_size=self.batch_size,
device=self.device,
b_dim=self.b_dim,
m_dim=self.m_dim,
)
drug_graphs, drugs_a_tensor, drugs_x_tensor = load_molecules(
data=drugs,
batch_size=self.batch_size,
device=self.device,
b_dim=self.b_dim,
m_dim=self.m_dim,
)
# Training configuration.
GEN_node = x_tensor # Generator input node features (annotation matrix of real molecules)
GEN_edge = a_tensor # Generator input edge features (adjacency matrix of real molecules)
if self.submodel == "DrugGEN":
DISC_node = drugs_x_tensor # Discriminator input node features (annotation matrix of drug molecules)
DISC_edge = drugs_a_tensor # Discriminator input edge features (adjacency matrix of drug molecules)
elif self.submodel == "NoTarget":
DISC_node = x_tensor # Discriminator input node features (annotation matrix of real molecules)
DISC_edge = a_tensor # Discriminator input edge features (adjacency matrix of real molecules)
# =================================================================================== #
# 2. Train the GAN #
# =================================================================================== #
loss = {}
self.reset_grad()
# Compute discriminator loss.
node, edge, d_loss = discriminator_loss(self.G,
self.D,
DISC_edge,
DISC_node,
GEN_edge,
GEN_node,
self.batch_size,
self.device,
self.lambda_gp)
d_total = d_loss
wandb.log({"d_loss": d_total.item()})
loss["d_total"] = d_total.item()
d_total.backward()
self.d_optimizer.step()
self.reset_grad()
# Compute generator loss.
generator_output = generator_loss(self.G,
self.D,
GEN_edge,
GEN_node,
self.batch_size)
g_loss, node, edge, node_sample, edge_sample = generator_output
g_total = g_loss
wandb.log({"g_loss": g_total.item()})
loss["g_total"] = g_total.item()
g_total.backward()
self.g_optimizer.step()
# Logging.
if (i+1) % self.log_step == 0:
logging(self.log_path, self.start_time, i, idx, loss, self.sample_directory,
drug_smiles,edge_sample, node_sample, self.dataset.matrices2mol,
self.dataset_name, a_tensor, x_tensor, drug_vecs)
mol_sample(self.sample_directory, edge_sample.detach(), node_sample.detach(),
idx, i, self.dataset.matrices2mol, self.dataset_name)
print("samples saved at epoch {} and iteration {}".format(idx,i))
self.save_model(self.model_directory, idx, i)
print("model saved at epoch {} and iteration {}".format(idx,i))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data configuration.
parser.add_argument('--raw_file', type=str, required=True)
parser.add_argument('--drug_raw_file', type=str, required=False, help='Required for DrugGEN model, optional for NoTarget')
parser.add_argument('--drug_data_dir', type=str, default='data')
parser.add_argument('--mol_data_dir', type=str, default='data')
parser.add_argument('--features', action='store_true', help='features dimension for nodes')
# Model configuration.
parser.add_argument('--submodel', type=str, default="DrugGEN", help="Chose model subtype: DrugGEN, NoTarget", choices=['DrugGEN', 'NoTarget'])
parser.add_argument('--act', type=str, default="relu", help="Activation function for the model.", choices=['relu', 'tanh', 'leaky', 'sigmoid'])
parser.add_argument('--max_atom', type=int, default=45, help='Max atom number for molecules must be specified.')
parser.add_argument('--dim', type=int, default=128, help='Dimension of the Transformer Encoder model for the GAN.')
parser.add_argument('--depth', type=int, default=1, help='Depth of the Transformer model from the GAN.')
parser.add_argument('--ddepth', type=int, default=1, help='Depth of the Transformer model from the discriminator.')
parser.add_argument('--heads', type=int, default=8, help='Number of heads for the MultiHeadAttention module from the GAN.')
parser.add_argument('--mlp_ratio', type=int, default=3, help='MLP ratio for the Transformer.')
parser.add_argument('--dropout', type=float, default=0., help='dropout rate')
parser.add_argument('--ddropout', type=float, default=0., help='dropout rate for the discriminator')
parser.add_argument('--lambda_gp', type=float, default=10, help='Gradient penalty lambda multiplier for the GAN.')
# Training configuration.
parser.add_argument('--batch_size', type=int, default=128, help='Batch size for the training.')
parser.add_argument('--epoch', type=int, default=10, help='Epoch number for Training.')
parser.add_argument('--g_lr', type=float, default=0.00001, help='learning rate for G')
parser.add_argument('--d_lr', type=float, default=0.00001, help='learning rate for D')
parser.add_argument('--beta1', type=float, default=0.9, help='beta1 for Adam optimizer')
parser.add_argument('--beta2', type=float, default=0.999, help='beta2 for Adam optimizer')
parser.add_argument('--log_dir', type=str, default='experiments/logs')
parser.add_argument('--sample_dir', type=str, default='experiments/samples')
parser.add_argument('--model_save_dir', type=str, default='experiments/models')
parser.add_argument('--log_sample_step', type=int, default=1000, help='step size for sampling during training')
# Resume training.
parser.add_argument('--resume', type=bool, default=False, help='resume training')
parser.add_argument('--resume_epoch', type=int, default=None, help='resume training from this epoch')
parser.add_argument('--resume_iter', type=int, default=None, help='resume training from this step')
parser.add_argument('--resume_directory', type=str, default=None, help='load pretrained weights from this directory')
# Seed configuration.
parser.add_argument('--set_seed', action='store_true', help='set seed for reproducibility')
parser.add_argument('--seed', type=int, default=1, help='seed for reproducibility')
# wandb configuration.
parser.add_argument('--use_wandb', action='store_true', help='use wandb for logging')
parser.add_argument('--online', action='store_true', help='use wandb online')
parser.add_argument('--exp_name', type=str, default='druggen', help='experiment name')
parser.add_argument('--parallel', action='store_true', help='Parallelize training')
config = parser.parse_args()
# Check if drug_raw_file is provided when using DrugGEN model
if config.submodel == "DrugGEN" and not config.drug_raw_file:
parser.error("--drug_raw_file is required when using DrugGEN model")
# If using NoTarget model and drug_raw_file is not provided, use a dummy file
if config.submodel == "NoTarget" and not config.drug_raw_file:
config.drug_raw_file = "data/akt_train.smi" # Use a reference file for NoTarget model (AKT) (not used for training for ease of use and encoder/decoder's)
trainer = Train(config)
trainer.train(config)