Spaces:
Sleeping
Sleeping
import pickle | |
import os.path as osp | |
import re | |
import torch | |
import numpy as np | |
from tqdm import tqdm | |
from rdkit import Chem | |
from rdkit import RDLogger | |
from torch_geometric.data import (Data, InMemoryDataset) | |
RDLogger.DisableLog('rdApp.*') | |
class DruggenDataset(InMemoryDataset): | |
def __init__(self, root, dataset_file, raw_files, max_atom, features, transform=None, pre_transform=None, pre_filter=None): | |
self.dataset_name = dataset_file.split(".")[0] | |
self.dataset_file = dataset_file | |
self.raw_files = raw_files | |
self.max_atom = max_atom | |
self.features = features | |
super().__init__(root, transform, pre_transform, pre_filter) | |
self.data, self.slices = torch.load(osp.join(root, dataset_file)) | |
def raw_file_names(self): | |
return self.raw_files | |
def processed_file_names(self): | |
''' | |
Return the processed file names. If these names are not present, they will be automatically processed using process function of this class. | |
''' | |
return self.dataset_file | |
def _generate_encoders_decoders(self, data): | |
""" | |
Generates the encoders and decoders for the atoms and bonds. | |
""" | |
self.data = data | |
print('Creating atoms encoder and decoder..') | |
atom_labels = set() | |
# bond_labels = set() | |
self.max_atom_size_in_data = 0 | |
for smile in data: | |
mol = Chem.MolFromSmiles(smile) | |
atom_labels.update([atom.GetAtomicNum() for atom in mol.GetAtoms()]) | |
# bond_labels.update([bond.GetBondType() for bond in mol.GetBonds()]) | |
self.max_atom_size_in_data = max(self.max_atom_size_in_data, mol.GetNumAtoms()) | |
atom_labels.update([0]) # add PAD symbol (for unknown atoms) | |
atom_labels = sorted(atom_labels) # turn set into list and sort it | |
# atom_labels = sorted(set([atom.GetAtomicNum() for mol in self.data for atom in mol.GetAtoms()] + [0])) | |
self.atom_encoder_m = {l: i for i, l in enumerate(atom_labels)} | |
self.atom_decoder_m = {i: l for i, l in enumerate(atom_labels)} | |
self.atom_num_types = len(atom_labels) | |
print(f'Created atoms encoder and decoder with {self.atom_num_types - 1} atom types and 1 PAD symbol!') | |
print("atom_labels", atom_labels) | |
print('Creating bonds encoder and decoder..') | |
# bond_labels = [Chem.rdchem.BondType.ZERO] + list(sorted(set(bond.GetBondType() | |
# for mol in self.data | |
# for bond in mol.GetBonds()))) | |
bond_labels = [ | |
Chem.rdchem.BondType.ZERO, | |
Chem.rdchem.BondType.SINGLE, | |
Chem.rdchem.BondType.DOUBLE, | |
Chem.rdchem.BondType.TRIPLE, | |
Chem.rdchem.BondType.AROMATIC, | |
] | |
print("bond labels", bond_labels) | |
self.bond_encoder_m = {l: i for i, l in enumerate(bond_labels)} | |
self.bond_decoder_m = {i: l for i, l in enumerate(bond_labels)} | |
self.bond_num_types = len(bond_labels) | |
print(f'Created bonds encoder and decoder with {self.bond_num_types - 1} bond types and 1 PAD symbol!') | |
#dataset_names = str(self.dataset_name) | |
with open("DrugGEN/data/encoders/" +"atom_" + self.dataset_name + ".pkl","wb") as atom_encoders: | |
pickle.dump(self.atom_encoder_m,atom_encoders) | |
with open("DrugGEN/data/decoders/" +"atom_" + self.dataset_name + ".pkl","wb") as atom_decoders: | |
pickle.dump(self.atom_decoder_m,atom_decoders) | |
with open("DrugGEN/data/encoders/" +"bond_" + self.dataset_name + ".pkl","wb") as bond_encoders: | |
pickle.dump(self.bond_encoder_m,bond_encoders) | |
with open("DrugGEN/data/decoders/" +"bond_" + self.dataset_name + ".pkl","wb") as bond_decoders: | |
pickle.dump(self.bond_decoder_m,bond_decoders) | |
def generate_adjacency_matrix(self, mol, connected=True, max_length=None): | |
""" | |
Generates the adjacency matrix for a molecule. | |
Args: | |
mol (Molecule): The molecule object. | |
connected (bool): Whether to check for connectivity in the molecule. Defaults to True. | |
max_length (int): The maximum length of the adjacency matrix. Defaults to the number of atoms in the molecule. | |
Returns: | |
numpy.ndarray or None: The adjacency matrix if connected and all atoms have a degree greater than 0, | |
otherwise None. | |
""" | |
max_length = max_length if max_length is not None else mol.GetNumAtoms() | |
A = np.zeros(shape=(max_length, max_length)) | |
begin, end = [b.GetBeginAtomIdx() for b in mol.GetBonds()], [b.GetEndAtomIdx() for b in mol.GetBonds()] | |
bond_type = [self.bond_encoder_m[b.GetBondType()] for b in mol.GetBonds()] | |
A[begin, end] = bond_type | |
A[end, begin] = bond_type | |
degree = np.sum(A[:mol.GetNumAtoms(), :mol.GetNumAtoms()], axis=-1) | |
return A if connected and (degree > 0).all() else None | |
def generate_node_features(self, mol, max_length=None): | |
""" | |
Generates the node features for a molecule. | |
Args: | |
mol (Molecule): The molecule object. | |
max_length (int): The maximum length of the node features. Defaults to the number of atoms in the molecule. | |
Returns: | |
numpy.ndarray: The node features matrix. | |
""" | |
max_length = max_length if max_length is not None else mol.GetNumAtoms() | |
return np.array([self.atom_encoder_m[atom.GetAtomicNum()] for atom in mol.GetAtoms()] + [0] * ( | |
max_length - mol.GetNumAtoms())) | |
def generate_additional_features(self, mol, max_length=None): | |
""" | |
Generates additional features for a molecule. | |
Args: | |
mol (Molecule): The molecule object. | |
max_length (int): The maximum length of the additional features. Defaults to the number of atoms in the molecule. | |
Returns: | |
numpy.ndarray: The additional features matrix. | |
""" | |
max_length = max_length if max_length is not None else mol.GetNumAtoms() | |
features = np.array([[*[a.GetDegree() == i for i in range(5)], | |
*[a.GetExplicitValence() == i for i in range(9)], | |
*[int(a.GetHybridization()) == i for i in range(1, 7)], | |
*[a.GetImplicitValence() == i for i in range(9)], | |
a.GetIsAromatic(), | |
a.GetNoImplicit(), | |
*[a.GetNumExplicitHs() == i for i in range(5)], | |
*[a.GetNumImplicitHs() == i for i in range(5)], | |
*[a.GetNumRadicalElectrons() == i for i in range(5)], | |
a.IsInRing(), | |
*[a.IsInRingSize(i) for i in range(2, 9)]] for a in mol.GetAtoms()], dtype=np.int32) | |
return np.vstack((features, np.zeros((max_length - features.shape[0], features.shape[1])))) | |
def decoder_load(self, dictionary_name): | |
with open("DrugGEN/data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f: | |
return pickle.load(f) | |
def drugs_decoder_load(self, dictionary_name): | |
with open("DrugGEN/data/decoders/" + dictionary_name +'.pkl', 'rb') as f: | |
return pickle.load(f) | |
def matrices2mol(self, node_labels, edge_labels, strict=True): | |
mol = Chem.RWMol() | |
RDLogger.DisableLog('rdApp.*') | |
atom_decoders = self.decoder_load("atom") | |
bond_decoders = self.decoder_load("bond") | |
for node_label in node_labels: | |
mol.AddAtom(Chem.Atom(atom_decoders[node_label])) | |
for start, end in zip(*np.nonzero(edge_labels)): | |
if start > end: | |
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]]) | |
mol = self.correct_mol(mol) | |
if strict: | |
try: | |
Chem.SanitizeMol(mol) | |
except: | |
mol = None | |
return mol | |
def drug_decoder_load(self, dictionary_name): | |
''' Loading the atom and bond decoders ''' | |
with open("DrugGEN/data/decoders/" + dictionary_name +"_" + "akt_train" +'.pkl', 'rb') as f: | |
return pickle.load(f) | |
def matrices2mol_drugs(self, node_labels, edge_labels, strict=True): | |
mol = Chem.RWMol() | |
RDLogger.DisableLog('rdApp.*') | |
atom_decoders = self.drug_decoder_load("atom") | |
bond_decoders = self.drug_decoder_load("bond") | |
for node_label in node_labels: | |
mol.AddAtom(Chem.Atom(atom_decoders[node_label])) | |
for start, end in zip(*np.nonzero(edge_labels)): | |
if start > end: | |
mol.AddBond(int(start), int(end), bond_decoders[edge_labels[start, end]]) | |
mol = self.correct_mol(mol) | |
if strict: | |
try: | |
Chem.SanitizeMol(mol) | |
except: | |
mol = None | |
return mol | |
def check_valency(self,mol): | |
""" | |
Checks that no atoms in the mol have exceeded their possible | |
valency | |
:return: True if no valency issues, False otherwise | |
""" | |
try: | |
Chem.SanitizeMol(mol, sanitizeOps=Chem.SanitizeFlags.SANITIZE_PROPERTIES) | |
return True, None | |
except ValueError as e: | |
e = str(e) | |
p = e.find('#') | |
e_sub = e[p:] | |
atomid_valence = list(map(int, re.findall(r'\d+', e_sub))) | |
return False, atomid_valence | |
def correct_mol(self,x): | |
# xsm = Chem.MolToSmiles(x, isomericSmiles=True) | |
mol = x | |
while True: | |
flag, atomid_valence = self.check_valency(mol) | |
if flag: | |
break | |
else: | |
assert len (atomid_valence) == 2 | |
idx = atomid_valence[0] | |
v = atomid_valence[1] | |
queue = [] | |
for b in mol.GetAtomWithIdx(idx).GetBonds(): | |
queue.append( | |
(b.GetIdx(), int(b.GetBondType()), b.GetBeginAtomIdx(), b.GetEndAtomIdx()) | |
) | |
queue.sort(key=lambda tup: tup[1], reverse=True) | |
if len(queue) > 0: | |
start = queue[0][2] | |
end = queue[0][3] | |
t = queue[0][1] - 1 | |
mol.RemoveBond(start, end) | |
#if t >= 1: | |
#mol.AddBond(start, end, self.decoder_load('bond_decoders')[t]) | |
# if '.' in Chem.MolToSmiles(mol, isomericSmiles=True): | |
# mol.AddBond(start, end, self.decoder_load('bond_decoders')[t]) | |
# print(tt) | |
# print(Chem.MolToSmiles(mol, isomericSmiles=True)) | |
return mol | |
def label2onehot(self, labels, dim): | |
"""Convert label indices to one-hot vectors.""" | |
out = torch.zeros(list(labels.size())+[dim]) | |
out.scatter_(len(out.size())-1,labels.unsqueeze(-1),1.) | |
return out.float() | |
def process(self, size= None): | |
''' | |
Process the dataset. This function will be only run if processed_file_names does not exist in the data folder already. | |
''' | |
# mols = [Chem.MolFromSmiles(line) for line in open(self.raw_files, 'r').readlines()] | |
# mols = list(filter(lambda x: x.GetNumAtoms() <= self.max_atom, mols)) | |
# mols = mols[:size] # i | |
# indices = range(len(mols)) | |
smiles = pd.read_csv(self.raw_files, header=None)[0].tolist() | |
self._generate_encoders_decoders(smiles) | |
# pbar.set_description(f'Processing chembl dataset') | |
# max_length = max(mol.GetNumAtoms() for mol in mols) | |
data_list = [] | |
max_length = min(self.max_atom_size_in_data, self.max_atom) | |
self.m_dim = len(self.atom_decoder_m) | |
# for idx in indices: | |
for smiles in tqdm(smiles, desc='Processing chembl dataset', total=len(smiles)): | |
# mol = mols[idx] | |
mol = Chem.MolFromSmiles(smile) | |
# filter by max atom size | |
if mol.GetNumAtoms() > max_length: | |
continue | |
A = self.generate_adjacency_matrix(mol, connected=True, max_length=max_length) | |
if A is not None: | |
x = torch.from_numpy(self.generate_node_features(mol, max_length=max_length)).to(torch.long).view(1, -1) | |
x = self.label2onehot(x,self.m_dim).squeeze() | |
if self.features: | |
f = torch.from_numpy(self.generate_additional_features(mol, max_length=max_length)).to(torch.long).view(x.shape[0], -1) | |
x = torch.concat((x,f), dim=-1) | |
adjacency = torch.from_numpy(A) | |
edge_index = adjacency.nonzero(as_tuple=False).t().contiguous() | |
edge_attr = adjacency[edge_index[0], edge_index[1]].to(torch.long) | |
data = Data(x=x, edge_index=edge_index, edge_attr=edge_attr) | |
if self.pre_filter is not None and not self.pre_filter(data): | |
continue | |
if self.pre_transform is not None: | |
data = self.pre_transform(data) | |
data_list.append(data) | |
# pbar.update(1) | |
# pbar.close() | |
torch.save(self.collate(data_list), osp.join(self.processed_dir, self.dataset_file)) | |
if __name__ == '__main__': | |
data = DruggenDataset("DrugGEN/data") | |