Spaces:
Sleeping
Sleeping
add loss
Browse files
loss.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def discriminator_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,z_edge,z_node):
|
5 |
+
|
6 |
+
# Compute loss with real molecules.
|
7 |
+
|
8 |
+
logits_real_disc = discriminator(mol_graph)
|
9 |
+
|
10 |
+
prediction_real = - torch.mean(logits_real_disc)
|
11 |
+
|
12 |
+
# Compute loss with fake molecules.
|
13 |
+
|
14 |
+
node, edge, node_sample, edge_sample = generator(z_edge, z_node)
|
15 |
+
|
16 |
+
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
|
17 |
+
|
18 |
+
logits_fake_disc = discriminator(graph.detach())
|
19 |
+
|
20 |
+
prediction_fake = torch.mean(logits_fake_disc)
|
21 |
+
|
22 |
+
# Compute gradient loss.
|
23 |
+
|
24 |
+
eps = torch.rand(mol_graph.size(0),1).to(device)
|
25 |
+
x_int0 = (eps * mol_graph + (1. - eps) * graph).requires_grad_(True)
|
26 |
+
|
27 |
+
grad0 = discriminator(x_int0)
|
28 |
+
d_loss_gp = grad_pen(grad0, x_int0)
|
29 |
+
|
30 |
+
# Calculate total loss
|
31 |
+
|
32 |
+
d_loss = prediction_fake + prediction_real + d_loss_gp * lambda_gp
|
33 |
+
|
34 |
+
return node, edge,d_loss
|
35 |
+
|
36 |
+
|
37 |
+
def generator_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,submodel):
|
38 |
+
|
39 |
+
# Compute loss with fake molecules.
|
40 |
+
|
41 |
+
node, edge, node_sample, edge_sample = generator(adj, annot)
|
42 |
+
|
43 |
+
|
44 |
+
graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
|
45 |
+
|
46 |
+
|
47 |
+
logits_fake_disc = discriminator(graph)
|
48 |
+
|
49 |
+
prediction_fake = - torch.mean(logits_fake_disc)
|
50 |
+
|
51 |
+
# Produce molecules.
|
52 |
+
|
53 |
+
g_edges_hat_sample = torch.max(edge_sample, -1)[1]
|
54 |
+
g_nodes_hat_sample = torch.max(node_sample , -1)[1]
|
55 |
+
|
56 |
+
fake_mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
|
57 |
+
for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
|
58 |
+
g_loss = prediction_fake
|
59 |
+
# Compute penalty loss.
|
60 |
+
if submodel == "RL":
|
61 |
+
reward = penalty(fake_mol, fps_r)
|
62 |
+
|
63 |
+
# Reinforcement Loss
|
64 |
+
|
65 |
+
rew_fake = v(graph)
|
66 |
+
|
67 |
+
reward_loss = torch.mean(rew_fake) ** 2 + reward
|
68 |
+
|
69 |
+
# Calculate total loss
|
70 |
+
|
71 |
+
g_loss = prediction_fake + reward_loss * 1
|
72 |
+
|
73 |
+
|
74 |
+
return g_loss, fake_mol, g_edges_hat_sample, g_nodes_hat_sample, node, edge
|
75 |
+
|
76 |
+
def discriminator2_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,akt1_adj,akt1_annot):
|
77 |
+
|
78 |
+
# Generate molecules.
|
79 |
+
|
80 |
+
dr_edges, dr_nodes = generator(adj,
|
81 |
+
annot,
|
82 |
+
akt1_adj,
|
83 |
+
akt1_annot)
|
84 |
+
|
85 |
+
|
86 |
+
dr_edges_hat = dr_edges.view(batch_size, -1)
|
87 |
+
|
88 |
+
dr_nodes_hat = dr_nodes.view(batch_size, -1)
|
89 |
+
|
90 |
+
dr_graph = torch.cat((dr_nodes_hat, dr_edges_hat), dim=-1)
|
91 |
+
|
92 |
+
# Compute loss with fake molecules.
|
93 |
+
|
94 |
+
dr_logits_fake = discriminator(dr_graph.detach())
|
95 |
+
|
96 |
+
d2_loss_fake = torch.mean(dr_logits_fake)
|
97 |
+
|
98 |
+
# Compute loss with real molecules.
|
99 |
+
|
100 |
+
dr_logits_real2 = discriminator(mol_graph)
|
101 |
+
|
102 |
+
d2_loss_real = - torch.mean(dr_logits_real2)
|
103 |
+
|
104 |
+
# Compute gradient loss.
|
105 |
+
|
106 |
+
eps_dr = torch.rand(mol_graph.size(0),1).to(device)
|
107 |
+
x_int0_dr = (eps_dr * mol_graph + (1. - eps_dr) * dr_graph).requires_grad_(True)
|
108 |
+
|
109 |
+
|
110 |
+
grad0_dr = discriminator(x_int0_dr)
|
111 |
+
d2_loss_gp = grad_pen(grad0_dr, x_int0_dr)
|
112 |
+
|
113 |
+
# Compute total loss.
|
114 |
+
|
115 |
+
d2_loss = d2_loss_fake + d2_loss_real + d2_loss_gp * lambda_gp
|
116 |
+
|
117 |
+
return d2_loss
|
118 |
+
|
119 |
+
def generator2_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,ak1_adj,akt1_annot, submodel):
|
120 |
+
|
121 |
+
# Generate molecules.
|
122 |
+
|
123 |
+
dr_edges_g, dr_nodes_g = generator(adj,
|
124 |
+
annot,
|
125 |
+
ak1_adj,
|
126 |
+
akt1_annot)
|
127 |
+
|
128 |
+
dr_edges_hat_g = dr_edges_g.view(batch_size, -1)
|
129 |
+
|
130 |
+
dr_nodes_hat_g = dr_nodes_g.view(batch_size, -1)
|
131 |
+
|
132 |
+
dr_graph_g = torch.cat((dr_nodes_hat_g, dr_edges_hat_g), dim=-1)
|
133 |
+
|
134 |
+
# Compute loss with fake molecules.
|
135 |
+
|
136 |
+
dr_g_edges_hat_sample, dr_g_nodes_hat_sample = torch.max(dr_edges_g, -1)[1], torch.max(dr_nodes_g, -1)[1]
|
137 |
+
|
138 |
+
g_tra_logits_fake2 = discriminator(dr_graph_g)
|
139 |
+
|
140 |
+
g2_loss_fake = - torch.mean(g_tra_logits_fake2)
|
141 |
+
|
142 |
+
# Reward
|
143 |
+
fake_mol_g = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
|
144 |
+
for e_, n_ in zip(dr_g_edges_hat_sample, dr_g_nodes_hat_sample)]
|
145 |
+
g2_loss = g2_loss_fake
|
146 |
+
if submodel == "RL":
|
147 |
+
reward2 = penalty(fake_mol_g, fps_r)
|
148 |
+
|
149 |
+
# Reinforcement Loss
|
150 |
+
|
151 |
+
rew_fake2 = v(dr_graph_g)
|
152 |
+
reward_loss2 = torch.mean(rew_fake2) ** 2 + reward2
|
153 |
+
|
154 |
+
# Calculate total loss
|
155 |
+
|
156 |
+
g2_loss = g2_loss_fake + reward_loss2 * 10
|
157 |
+
|
158 |
+
return g2_loss, fake_mol_g, dr_g_edges_hat_sample, dr_g_nodes_hat_sample#, reward2
|