osbm commited on
Commit
0b7b562
·
1 Parent(s): 7ab1cfa
Files changed (1) hide show
  1. loss.py +158 -0
loss.py ADDED
@@ -0,0 +1,158 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+
4
+ def discriminator_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,z_edge,z_node):
5
+
6
+ # Compute loss with real molecules.
7
+
8
+ logits_real_disc = discriminator(mol_graph)
9
+
10
+ prediction_real = - torch.mean(logits_real_disc)
11
+
12
+ # Compute loss with fake molecules.
13
+
14
+ node, edge, node_sample, edge_sample = generator(z_edge, z_node)
15
+
16
+ graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
17
+
18
+ logits_fake_disc = discriminator(graph.detach())
19
+
20
+ prediction_fake = torch.mean(logits_fake_disc)
21
+
22
+ # Compute gradient loss.
23
+
24
+ eps = torch.rand(mol_graph.size(0),1).to(device)
25
+ x_int0 = (eps * mol_graph + (1. - eps) * graph).requires_grad_(True)
26
+
27
+ grad0 = discriminator(x_int0)
28
+ d_loss_gp = grad_pen(grad0, x_int0)
29
+
30
+ # Calculate total loss
31
+
32
+ d_loss = prediction_fake + prediction_real + d_loss_gp * lambda_gp
33
+
34
+ return node, edge,d_loss
35
+
36
+
37
+ def generator_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,submodel):
38
+
39
+ # Compute loss with fake molecules.
40
+
41
+ node, edge, node_sample, edge_sample = generator(adj, annot)
42
+
43
+
44
+ graph = torch.cat((node_sample.view(batch_size, -1), edge_sample.view(batch_size, -1)), dim=-1)
45
+
46
+
47
+ logits_fake_disc = discriminator(graph)
48
+
49
+ prediction_fake = - torch.mean(logits_fake_disc)
50
+
51
+ # Produce molecules.
52
+
53
+ g_edges_hat_sample = torch.max(edge_sample, -1)[1]
54
+ g_nodes_hat_sample = torch.max(node_sample , -1)[1]
55
+
56
+ fake_mol = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
57
+ for e_, n_ in zip(g_edges_hat_sample, g_nodes_hat_sample)]
58
+ g_loss = prediction_fake
59
+ # Compute penalty loss.
60
+ if submodel == "RL":
61
+ reward = penalty(fake_mol, fps_r)
62
+
63
+ # Reinforcement Loss
64
+
65
+ rew_fake = v(graph)
66
+
67
+ reward_loss = torch.mean(rew_fake) ** 2 + reward
68
+
69
+ # Calculate total loss
70
+
71
+ g_loss = prediction_fake + reward_loss * 1
72
+
73
+
74
+ return g_loss, fake_mol, g_edges_hat_sample, g_nodes_hat_sample, node, edge
75
+
76
+ def discriminator2_loss(generator, discriminator, mol_graph, adj, annot, batch_size, device, grad_pen, lambda_gp,akt1_adj,akt1_annot):
77
+
78
+ # Generate molecules.
79
+
80
+ dr_edges, dr_nodes = generator(adj,
81
+ annot,
82
+ akt1_adj,
83
+ akt1_annot)
84
+
85
+
86
+ dr_edges_hat = dr_edges.view(batch_size, -1)
87
+
88
+ dr_nodes_hat = dr_nodes.view(batch_size, -1)
89
+
90
+ dr_graph = torch.cat((dr_nodes_hat, dr_edges_hat), dim=-1)
91
+
92
+ # Compute loss with fake molecules.
93
+
94
+ dr_logits_fake = discriminator(dr_graph.detach())
95
+
96
+ d2_loss_fake = torch.mean(dr_logits_fake)
97
+
98
+ # Compute loss with real molecules.
99
+
100
+ dr_logits_real2 = discriminator(mol_graph)
101
+
102
+ d2_loss_real = - torch.mean(dr_logits_real2)
103
+
104
+ # Compute gradient loss.
105
+
106
+ eps_dr = torch.rand(mol_graph.size(0),1).to(device)
107
+ x_int0_dr = (eps_dr * mol_graph + (1. - eps_dr) * dr_graph).requires_grad_(True)
108
+
109
+
110
+ grad0_dr = discriminator(x_int0_dr)
111
+ d2_loss_gp = grad_pen(grad0_dr, x_int0_dr)
112
+
113
+ # Compute total loss.
114
+
115
+ d2_loss = d2_loss_fake + d2_loss_real + d2_loss_gp * lambda_gp
116
+
117
+ return d2_loss
118
+
119
+ def generator2_loss(generator, discriminator, v, adj, annot, batch_size, penalty, matrices2mol, fps_r,ak1_adj,akt1_annot, submodel):
120
+
121
+ # Generate molecules.
122
+
123
+ dr_edges_g, dr_nodes_g = generator(adj,
124
+ annot,
125
+ ak1_adj,
126
+ akt1_annot)
127
+
128
+ dr_edges_hat_g = dr_edges_g.view(batch_size, -1)
129
+
130
+ dr_nodes_hat_g = dr_nodes_g.view(batch_size, -1)
131
+
132
+ dr_graph_g = torch.cat((dr_nodes_hat_g, dr_edges_hat_g), dim=-1)
133
+
134
+ # Compute loss with fake molecules.
135
+
136
+ dr_g_edges_hat_sample, dr_g_nodes_hat_sample = torch.max(dr_edges_g, -1)[1], torch.max(dr_nodes_g, -1)[1]
137
+
138
+ g_tra_logits_fake2 = discriminator(dr_graph_g)
139
+
140
+ g2_loss_fake = - torch.mean(g_tra_logits_fake2)
141
+
142
+ # Reward
143
+ fake_mol_g = [matrices2mol(n_.data.cpu().numpy(), e_.data.cpu().numpy(), strict=True)
144
+ for e_, n_ in zip(dr_g_edges_hat_sample, dr_g_nodes_hat_sample)]
145
+ g2_loss = g2_loss_fake
146
+ if submodel == "RL":
147
+ reward2 = penalty(fake_mol_g, fps_r)
148
+
149
+ # Reinforcement Loss
150
+
151
+ rew_fake2 = v(dr_graph_g)
152
+ reward_loss2 = torch.mean(rew_fake2) ** 2 + reward2
153
+
154
+ # Calculate total loss
155
+
156
+ g2_loss = g2_loss_fake + reward_loss2 * 10
157
+
158
+ return g2_loss, fake_mol_g, dr_g_edges_hat_sample, dr_g_nodes_hat_sample#, reward2