osbm commited on
Commit
76a1678
·
1 Parent(s): e698cc9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -7
app.py CHANGED
@@ -88,16 +88,17 @@ with st.sidebar:
88
  st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
89
  st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
90
 
91
-
92
- with st.form("model_selection_from"):
93
- model_name = st.radio(
94
- '''
95
- Select a model to make inference (DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein)
96
-
97
  - **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
98
  - **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
99
  - **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
100
- ''',
 
 
 
 
 
101
  ('DrugGEN-Prot', 'DrugGEN-CrossLoss', 'DrugGEN-NoTarget')
102
  )
103
 
 
88
  st.title("DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
89
  st.write("[![arXiv](https://img.shields.io/badge/arXiv-2302.07868-b31b1b.svg)](https://arxiv.org/abs/2302.07868) [![github-repository](https://img.shields.io/badge/GitHub-black?logo=github)](https://github.com/HUBioDataLab/DrugGEN)")
90
 
91
+ st.write("""
92
+ ### Model Variations
 
 
 
 
93
  - **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
94
  - **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
95
  - **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
96
+
97
+ """)
98
+
99
+ with st.form("model_selection_from"):
100
+ model_name = st.radio(
101
+ 'Select a model to make inference (DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein)',
102
  ('DrugGEN-Prot', 'DrugGEN-CrossLoss', 'DrugGEN-NoTarget')
103
  )
104