mgyigit commited on
Commit
92db821
·
verified ·
1 Parent(s): 2caba59

Update inference.py

Browse files
Files changed (1) hide show
  1. inference.py +12 -12
inference.py CHANGED
@@ -114,7 +114,7 @@ class Inference(object):
114
 
115
  def decoder_load(self, dictionary_name):
116
  ''' Loading the atom and bond decoders'''
117
- with open("DrugGEN/data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
118
  return pickle.load(f)
119
 
120
 
@@ -140,16 +140,16 @@ class Inference(object):
140
  self.restore_model(self.submodel, self.inference_model)
141
 
142
  # smiles data for metrics calculation.
143
- chembl_smiles = [line for line in open("DrugGEN/data/chembl_train.smi", 'r').read().splitlines()]
144
- chembl_test = [line for line in open("DrugGEN/data/chembl_test.smi", 'r').read().splitlines()]
145
- drug_smiles = [line for line in open("DrugGEN/data/akt_inhibitors.smi", 'r').read().splitlines()]
146
  drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
147
  drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
148
 
149
 
150
  # Make directories if not exist.
151
- if not os.path.exists("DrugGEN/experiments/inference/{}".format(self.submodel)):
152
- os.makedirs("DrugGEN/experiments/inference/{}".format(self.submodel))
153
  if self.correct:
154
  correct = smi_correct(self.submodel, "DrugGEN_/experiments/inference/{}".format(self.submodel))
155
  search_res = pd.DataFrame(columns=["submodel", "validity",
@@ -166,7 +166,7 @@ class Inference(object):
166
  uniqueness_calc = []
167
  real_smiles_snn = []
168
  nodes_sample = torch.Tensor(size=[1,45,1]).to(self.device)
169
- f = open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
170
  f.write("SMILES")
171
  f.write("\n")
172
  val_counter = 0
@@ -226,16 +226,16 @@ class Inference(object):
226
  f.close()
227
  print("Inference completed, starting metrics calculation.")
228
  if self.correct:
229
- corrected = correct.correct("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))
230
  gen_smi = corrected["SMILES"].tolist()
231
 
232
  else:
233
- gen_smi = pd.read_csv("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
234
 
235
 
236
  et = time.time() - start_time
237
 
238
- with open("DrugGEN/experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w") as f:
239
  for i in gen_smi:
240
  f.write(i)
241
  f.write("\n")
@@ -265,9 +265,9 @@ if __name__=="__main__":
265
 
266
  # Data configuration.
267
  parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
268
- parser.add_argument('--inf_raw_file', type=str, default='DrugGEN/data/chembl_test.smi')
269
  parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
270
- parser.add_argument('--mol_data_dir', type=str, default='DrugGEN/data')
271
  parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
272
 
273
  # Model configuration.
 
114
 
115
  def decoder_load(self, dictionary_name):
116
  ''' Loading the atom and bond decoders'''
117
+ with open("data/decoders/" + dictionary_name + "_" + self.dataset_name + '.pkl', 'rb') as f:
118
  return pickle.load(f)
119
 
120
 
 
140
  self.restore_model(self.submodel, self.inference_model)
141
 
142
  # smiles data for metrics calculation.
143
+ chembl_smiles = [line for line in open("data/chembl_train.smi", 'r').read().splitlines()]
144
+ chembl_test = [line for line in open("data/chembl_test.smi", 'r').read().splitlines()]
145
+ drug_smiles = [line for line in open("data/akt_inhibitors.smi", 'r').read().splitlines()]
146
  drug_mols = [Chem.MolFromSmiles(smi) for smi in drug_smiles]
147
  drug_vecs = [AllChem.GetMorganFingerprintAsBitVect(x, 2, nBits=1024) for x in drug_mols if x is not None]
148
 
149
 
150
  # Make directories if not exist.
151
+ if not os.path.exists("experiments/inference/{}".format(self.submodel)):
152
+ os.makedirs("experiments/inference/{}".format(self.submodel))
153
  if self.correct:
154
  correct = smi_correct(self.submodel, "DrugGEN_/experiments/inference/{}".format(self.submodel))
155
  search_res = pd.DataFrame(columns=["submodel", "validity",
 
166
  uniqueness_calc = []
167
  real_smiles_snn = []
168
  nodes_sample = torch.Tensor(size=[1,45,1]).to(self.device)
169
+ f = open("experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w")
170
  f.write("SMILES")
171
  f.write("\n")
172
  val_counter = 0
 
226
  f.close()
227
  print("Inference completed, starting metrics calculation.")
228
  if self.correct:
229
+ corrected = correct.correct("experiments/inference/{}/inference_drugs.txt".format(self.submodel))
230
  gen_smi = corrected["SMILES"].tolist()
231
 
232
  else:
233
+ gen_smi = pd.read_csv("experiments/inference/{}/inference_drugs.txt".format(self.submodel))["SMILES"].tolist()
234
 
235
 
236
  et = time.time() - start_time
237
 
238
+ with open("experiments/inference/{}/inference_drugs.txt".format(self.submodel), "w") as f:
239
  for i in gen_smi:
240
  f.write(i)
241
  f.write("\n")
 
265
 
266
  # Data configuration.
267
  parser.add_argument('--inf_dataset_file', type=str, default='chembl45_test.pt')
268
+ parser.add_argument('--inf_raw_file', type=str, default='data/chembl_test.smi')
269
  parser.add_argument('--inf_batch_size', type=int, default=1, help='Batch size for inference')
270
+ parser.add_argument('--mol_data_dir', type=str, default='data')
271
  parser.add_argument('--features', type=str2bool, default=False, help='features dimension for nodes')
272
 
273
  # Model configuration.