osbm commited on
Commit
99c16c0
·
1 Parent(s): 0e9e498

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -19
app.py CHANGED
@@ -90,28 +90,19 @@ with st.sidebar:
90
 
91
 
92
  with st.form("model_selection_from"):
93
-
94
- # model_name = st.radio(
95
- # "Select a model to make inference (Prot and CrossLoss models are pretrained on AKT1 inhibitors)",
96
- # ('Prot', 'CrossLoss', 'NoTarget'))
97
- model_names = (
98
- "**DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.",
99
- "**DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.",
100
- "**DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation."
101
- )
102
-
103
- model_names_index_to_name = {
104
- 0: "Prot",
105
- 1: "CrossLoss",
106
- 2: "NoTarget",
107
- }
108
-
109
  model_name = st.radio(
110
- "Select a model to make inference (DrugGEN-Prot and -CrossLoss models design molecules to target the AKT1 protein)",
111
- model_names
 
 
 
 
 
 
 
112
  )
113
 
114
- model_name = model_names_index_to_name[model_names.index(model_name)]
115
 
116
  molecule_num_input = st.number_input('Number of molecules to generate', min_value=1, max_value=100_000, value=1000, step=1)
117
 
 
90
 
91
 
92
  with st.form("model_selection_from"):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93
  model_name = st.radio(
94
+ '''
95
+ Select a model to make inference (DrugGEN-Prot and DrugGEN-CrossLoss models design molecules to target the AKT1 protein)
96
+
97
+ - **DrugGEN-Prot**: composed of two GANs, incorporates protein features to the transformer decoder module of GAN2 (together with the de novo molecules generated by GAN1) to direct the target centric molecule design.
98
+ - **DrugGEN-CrossLoss**: composed of one GAN, the input of the GAN1 generator is the real molecules dataset and the GAN1 discriminator compares the generated molecules with the real inhibitors of the given target.
99
+ - **DrugGEN-NoTarget**: composed of one GAN, focuses on learning the chemical properties from the ChEMBL training dataset, no target-specific generation.
100
+ '''
101
+ ",
102
+ ('DrugGEN-Prot', 'DrugGEN-CrossLoss', 'DrugGEN-NoTarget')
103
  )
104
 
105
+ model_name = model_name.replace("DrugGEN-", "")
106
 
107
  molecule_num_input = st.number_input('Number of molecules to generate', min_value=1, max_value=100_000, value=1000, step=1)
108