Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -68,10 +68,10 @@ model_configs = {
|
|
68 |
|
69 |
|
70 |
|
71 |
-
def function(model_name: str, num_molecules: int, seed_num: int)
|
72 |
'''
|
73 |
Returns:
|
74 |
-
image, score_df,
|
75 |
'''
|
76 |
if model_name == "DrugGEN-NoTarget":
|
77 |
model_name = "NoTarget"
|
@@ -112,6 +112,20 @@ def function(model_name: str, num_molecules: int, seed_num: int) -> tuple[PIL.Im
|
|
112 |
"SA Score": [scores["sa"].iloc[0]]
|
113 |
})
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
output_file_path = f'experiments/inference/{model_name}/inference_drugs.txt'
|
116 |
|
117 |
new_path = f'{model_name}_denovo_mols.smi'
|
@@ -146,7 +160,7 @@ def function(model_name: str, num_molecules: int, seed_num: int) -> tuple[PIL.Im
|
|
146 |
highlightBondLists=None,
|
147 |
)
|
148 |
|
149 |
-
return molecule_image, score_df, new_path
|
150 |
|
151 |
|
152 |
|
@@ -154,9 +168,21 @@ with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
|
154 |
with gr.Row():
|
155 |
with gr.Column(scale=1):
|
156 |
gr.Markdown("# DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
with gr.Accordion("About DrugGEN Models", open=False):
|
162 |
gr.Markdown("""
|
@@ -234,29 +260,67 @@ For more details, see our [paper on arXiv](https://arxiv.org/abs/2302.07868).
|
|
234 |
)
|
235 |
|
236 |
with gr.Column(scale=2):
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
|
|
|
|
246 |
|
247 |
-
with gr.
|
248 |
-
|
249 |
-
label="
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
-
submit_button.click(function, inputs=[model_name, num_molecules, seed_num], outputs=[image_output, scores_df, file_download], api_name="inference")
|
259 |
-
#demo.queue(concurrency_count=1)
|
260 |
demo.queue()
|
261 |
demo.launch()
|
262 |
|
|
|
68 |
|
69 |
|
70 |
|
71 |
+
def function(model_name: str, num_molecules: int, seed_num: int):
|
72 |
'''
|
73 |
Returns:
|
74 |
+
image, score_df, file_path, and individual metrics
|
75 |
'''
|
76 |
if model_name == "DrugGEN-NoTarget":
|
77 |
model_name = "NoTarget"
|
|
|
112 |
"SA Score": [scores["sa"].iloc[0]]
|
113 |
})
|
114 |
|
115 |
+
# Extract individual metrics
|
116 |
+
validity = scores["validity"].iloc[0]
|
117 |
+
uniqueness = scores["uniqueness"].iloc[0]
|
118 |
+
novelty_train = scores["novelty"].iloc[0]
|
119 |
+
novelty_test = scores["novelty_test"].iloc[0]
|
120 |
+
drug_novelty = scores["drug_novelty"].iloc[0]
|
121 |
+
runtime = et
|
122 |
+
qed = scores["qed"].iloc[0]
|
123 |
+
sa = scores["sa"].iloc[0]
|
124 |
+
int_div = scores["IntDiv"].iloc[0]
|
125 |
+
snn_chembl = scores["snn_chembl"].iloc[0]
|
126 |
+
snn_drug = scores["snn_drug"].iloc[0]
|
127 |
+
max_len = scores["max_len"].iloc[0]
|
128 |
+
|
129 |
output_file_path = f'experiments/inference/{model_name}/inference_drugs.txt'
|
130 |
|
131 |
new_path = f'{model_name}_denovo_mols.smi'
|
|
|
160 |
highlightBondLists=None,
|
161 |
)
|
162 |
|
163 |
+
return molecule_image, score_df, new_path, validity, uniqueness, novelty_train, novelty_test, drug_novelty, runtime, qed, sa, int_div, snn_chembl, snn_drug, max_len
|
164 |
|
165 |
|
166 |
|
|
|
168 |
with gr.Row():
|
169 |
with gr.Column(scale=1):
|
170 |
gr.Markdown("# DrugGEN: Target Centric De Novo Design of Drug Candidate Molecules with Graph Generative Deep Adversarial Networks")
|
171 |
+
|
172 |
+
gr.HTML("""
|
173 |
+
<div style="display: flex; gap: 10px; margin-bottom: 15px;">
|
174 |
+
<a href="https://arxiv.org/abs/2302.07868" target="_blank" style="text-decoration: none;">
|
175 |
+
<div style="display: inline-block; background-color: #b31b1b; color: white; padding: 5px 10px; border-radius: 5px; font-size: 14px;">
|
176 |
+
<span style="font-weight: bold;">arXiv</span> 2302.07868
|
177 |
+
</div>
|
178 |
+
</a>
|
179 |
+
<a href="https://github.com/HUBioDataLab/DrugGEN" target="_blank" style="text-decoration: none;">
|
180 |
+
<div style="display: inline-block; background-color: #24292e; color: white; padding: 5px 10px; border-radius: 5px; font-size: 14px;">
|
181 |
+
<span style="font-weight: bold;">GitHub</span> Repository
|
182 |
+
</div>
|
183 |
+
</a>
|
184 |
+
</div>
|
185 |
+
""")
|
186 |
|
187 |
with gr.Accordion("About DrugGEN Models", open=False):
|
188 |
gr.Markdown("""
|
|
|
260 |
)
|
261 |
|
262 |
with gr.Column(scale=2):
|
263 |
+
image_output = gr.Image(
|
264 |
+
label="Sample of Generated Molecules",
|
265 |
+
elem_id="molecule_display"
|
266 |
+
)
|
267 |
+
|
268 |
+
file_download = gr.File(
|
269 |
+
label="Download All Generated Molecules (SMILES format)",
|
270 |
+
)
|
271 |
+
|
272 |
+
with gr.Box():
|
273 |
+
gr.Markdown("### Performance Metrics")
|
274 |
|
275 |
+
with gr.Row():
|
276 |
+
with gr.Column():
|
277 |
+
validity = gr.Number(label="Validity", precision=3)
|
278 |
+
uniqueness = gr.Number(label="Uniqueness", precision=3)
|
279 |
+
novelty_train = gr.Number(label="Novelty (Train)", precision=3)
|
280 |
+
novelty_test = gr.Number(label="Novelty (Test)", precision=3)
|
281 |
+
drug_novelty = gr.Number(label="Drug Novelty", precision=3)
|
282 |
+
runtime = gr.Number(label="Runtime (seconds)", precision=2)
|
283 |
+
|
284 |
+
with gr.Column():
|
285 |
+
qed = gr.Number(label="QED Score", precision=3, info="Higher is more drug-like (0-1)")
|
286 |
+
sa = gr.Number(label="SA Score", precision=3, info="Lower is easier to synthesize (1-10)")
|
287 |
+
int_div = gr.Number(label="Internal Diversity", precision=3)
|
288 |
+
snn_chembl = gr.Number(label="SNN ChEMBL", precision=3)
|
289 |
+
snn_drug = gr.Number(label="SNN Drug", precision=3)
|
290 |
+
max_len = gr.Number(label="Max Length", precision=3)
|
291 |
+
|
292 |
+
with gr.Accordion("All Metrics (Table View)", open=False):
|
293 |
+
scores_df = gr.Dataframe(
|
294 |
+
headers=["Runtime (seconds)", "Validity", "Uniqueness", "Novelty (Train)", "Novelty (Test)",
|
295 |
+
"Drug Novelty", "Max Length", "Mean Atom Type", "SNN ChEMBL", "SNN Drug",
|
296 |
+
"Internal Diversity", "QED", "SA Score"]
|
297 |
+
)
|
298 |
+
|
299 |
+
gr.Markdown("### Created by the HUBioDataLab | [GitHub](https://github.com/HUBioDataLab/DrugGEN) | [Paper](https://arxiv.org/abs/2302.07868)")
|
300 |
+
|
301 |
+
submit_button.click(
|
302 |
+
function,
|
303 |
+
inputs=[model_name, num_molecules, seed_num],
|
304 |
+
outputs=[
|
305 |
+
image_output,
|
306 |
+
scores_df,
|
307 |
+
file_download,
|
308 |
+
validity,
|
309 |
+
uniqueness,
|
310 |
+
novelty_train,
|
311 |
+
novelty_test,
|
312 |
+
drug_novelty,
|
313 |
+
runtime,
|
314 |
+
qed,
|
315 |
+
sa,
|
316 |
+
int_div,
|
317 |
+
snn_chembl,
|
318 |
+
snn_drug,
|
319 |
+
max_len
|
320 |
+
],
|
321 |
+
api_name="inference"
|
322 |
+
)
|
323 |
|
|
|
|
|
324 |
demo.queue()
|
325 |
demo.launch()
|
326 |
|