import streamlit as st from trainer import Trainer st.title("Hello World") class DrugGENConfig: submodel='CrossLoss' act='relu' z_dim=16 max_atom=45 lambda_gp=1 dim=128 depth=1 heads=8 dec_depth=1 dec_heads=8 dec_dim=128 mlp_ratio=3 warm_up_steps=0 dis_select='mlp' init_type='normal' batch_size=128 epoch=50 g_lr=0.00001 d_lr=0.00001 g2_lr=0.00001 d2_lr=0.00001 dropout=0. dec_dropout=0. n_critic=1 beta1=0.9 beta2=0.999 resume_iters=None clipping_value=2 features=False test_iters=10_000 num_test_epoch=30_000 inference_sample_num=1000 num_workers=1 mode="inference" inference_iterations=100 inf_batch_size=1 protein_data_dir='data/akt' drug_index='data/drug_smiles.index' drug_data_dir='data/akt' mol_data_dir='data' log_dir='experiments/logs' model_save_dir='experiments/models' inference_model="" sample_dir='experiments/samples' result_dir="experiments/tboard_output" dataset_file="chembl45_train.pt" drug_dataset_file="akt_train.pt" raw_file='data/chembl_train.smi' drug_raw_file="data/akt_train.smi" inf_dataset_file="chembl45_test.pt" inf_drug_dataset_file='akt_test.pt' inf_raw_file='data/chembl_test.smi' inf_drug_raw_file="data/akt_test.smi" log_sample_step=1000 with st.spinner('Setting up the trainer class...'): trainer = Trainer(DrugGENConfig()) with st.spinner('Generating Molecules...'): trainer.inference()