import math import torch import torch.nn as nn from torch.nn import functional as F class MLP(nn.Module): """ A simple Multi-Layer Perceptron (MLP) module consisting of two linear layers with a ReLU activation in between, followed by a dropout on the output. Attributes: fc1 (nn.Linear): The first fully-connected layer. act (nn.ReLU): ReLU activation function. fc2 (nn.Linear): The second fully-connected layer. droprateout (nn.Dropout): Dropout layer applied to the output. """ def __init__(self, in_feat, hid_feat=None, out_feat=None, dropout=0.): """ Initializes the MLP module. Args: in_feat (int): Number of input features. hid_feat (int, optional): Number of hidden features. Defaults to in_feat if not provided. out_feat (int, optional): Number of output features. Defaults to in_feat if not provided. dropout (float, optional): Dropout rate. Defaults to 0. """ super().__init__() # Set hidden and output dimensions to input dimension if not specified if not hid_feat: hid_feat = in_feat if not out_feat: out_feat = in_feat self.fc1 = nn.Linear(in_feat, hid_feat) self.act = nn.ReLU() self.fc2 = nn.Linear(hid_feat, out_feat) self.droprateout = nn.Dropout(dropout) def forward(self, x): """ Forward pass for the MLP. Args: x (torch.Tensor): Input tensor. Returns: torch.Tensor: Output tensor after applying the linear layers, activation, and dropout. """ x = self.fc1(x) x = self.act(x) x = self.fc2(x) return self.droprateout(x) class MHA(nn.Module): """ Multi-Head Attention (MHA) module of the graph transformer with edge features incorporated into the attention computation. Attributes: heads (int): Number of attention heads. scale (float): Scaling factor for the attention scores. q, k, v (nn.Linear): Linear layers to project the node features into query, key, and value embeddings. e (nn.Linear): Linear layer to project the edge features. d_k (int): Dimension of each attention head. out_e (nn.Linear): Linear layer applied to the computed edge features. out_n (nn.Linear): Linear layer applied to the aggregated node features. """ def __init__(self, dim, heads, attention_dropout=0.): """ Initializes the Multi-Head Attention module. Args: dim (int): Dimensionality of the input features. heads (int): Number of attention heads. attention_dropout (float, optional): Dropout rate for attention (not used explicitly in this implementation). """ super().__init__() # Ensure that dimension is divisible by the number of heads assert dim % heads == 0 self.heads = heads self.scale = 1. / math.sqrt(dim) # Scaling factor for attention # Linear layers for projecting node features self.q = nn.Linear(dim, dim) self.k = nn.Linear(dim, dim) self.v = nn.Linear(dim, dim) # Linear layer for projecting edge features self.e = nn.Linear(dim, dim) self.d_k = dim // heads # Dimension per head # Linear layers for output transformations self.out_e = nn.Linear(dim, dim) self.out_n = nn.Linear(dim, dim) def forward(self, node, edge): """ Forward pass for the Multi-Head Attention. Args: node (torch.Tensor): Node feature tensor of shape (batch, num_nodes, dim). edge (torch.Tensor): Edge feature tensor of shape (batch, num_nodes, num_nodes, dim). Returns: tuple: (updated node features, updated edge features) """ b, n, c = node.shape # Compute query, key, and value embeddings and reshape for multi-head attention q_embed = self.q(node).view(b, n, self.heads, c // self.heads) k_embed = self.k(node).view(b, n, self.heads, c // self.heads) v_embed = self.v(node).view(b, n, self.heads, c // self.heads) # Compute edge embeddings e_embed = self.e(edge).view(b, n, n, self.heads, c // self.heads) # Adjust dimensions for broadcasting: add singleton dimensions to queries and keys q_embed = q_embed.unsqueeze(2) # Shape: (b, n, 1, heads, c//heads) k_embed = k_embed.unsqueeze(1) # Shape: (b, 1, n, heads, c//heads) # Compute attention scores attn = q_embed * k_embed attn = attn / math.sqrt(self.d_k) attn = attn * (e_embed + 1) * e_embed # Modulated attention incorporating edge features edge_out = self.out_e(attn.flatten(3)) # Flatten last dimension for linear layer # Apply softmax over the node dimension to obtain normalized attention weights attn = F.softmax(attn, dim=2) v_embed = v_embed.unsqueeze(1) # Adjust dimensions to broadcast: (b, 1, n, heads, c//heads) v_embed = attn * v_embed v_embed = v_embed.sum(dim=2).flatten(2) node_out = self.out_n(v_embed) return node_out, edge_out class Encoder_Block(nn.Module): """ Transformer encoder block that integrates node and edge features. Consists of: - A multi-head attention layer with edge modulation. - Two MLP layers, each with residual connections and layer normalization. Attributes: ln1, ln3, ln4, ln5, ln6 (nn.LayerNorm): Layer normalization modules. attn (MHA): Multi-head attention module. mlp, mlp2 (MLP): MLP modules for further transformation of node and edge features. """ def __init__(self, dim, heads, act, mlp_ratio=4, drop_rate=0.): """ Initializes the encoder block. Args: dim (int): Dimensionality of the input features. heads (int): Number of attention heads. act (callable): Activation function (not explicitly used in this block, but provided for potential extensions). mlp_ratio (int, optional): Ratio to determine the hidden layer size in the MLP. Defaults to 4. drop_rate (float, optional): Dropout rate applied in the MLPs. Defaults to 0. """ super().__init__() self.ln1 = nn.LayerNorm(dim) self.attn = MHA(dim, heads, drop_rate) self.ln3 = nn.LayerNorm(dim) self.ln4 = nn.LayerNorm(dim) self.mlp = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate) self.mlp2 = MLP(dim, dim * mlp_ratio, dim, dropout=drop_rate) self.ln5 = nn.LayerNorm(dim) self.ln6 = nn.LayerNorm(dim) def forward(self, x, y): """ Forward pass of the encoder block. Args: x (torch.Tensor): Node feature tensor. y (torch.Tensor): Edge feature tensor. Returns: tuple: (updated node features, updated edge features) """ x1 = self.ln1(x) x2, y1 = self.attn(x1, y) x2 = x1 + x2 y2 = y + y1 x2 = self.ln3(x2) y2 = self.ln4(y2) x = self.ln5(x2 + self.mlp(x2)) y = self.ln6(y2 + self.mlp2(y2)) return x, y class TransformerEncoder(nn.Module): """ Transformer Encoder composed of a sequence of encoder blocks. Attributes: Encoder_Blocks (nn.ModuleList): A list of Encoder_Block modules stacked sequentially. """ def __init__(self, dim, depth, heads, act, mlp_ratio=4, drop_rate=0.1): """ Initializes the Transformer Encoder. Args: dim (int): Dimensionality of the input features. depth (int): Number of encoder blocks to stack. heads (int): Number of attention heads in each block. act (callable): Activation function (passed to encoder blocks for potential use). mlp_ratio (int, optional): Ratio for determining the hidden layer size in MLP modules. Defaults to 4. drop_rate (float, optional): Dropout rate for the MLPs within each block. Defaults to 0.1. """ super().__init__() self.Encoder_Blocks = nn.ModuleList([ Encoder_Block(dim, heads, act, mlp_ratio, drop_rate) for _ in range(depth) ]) def forward(self, x, y): """ Forward pass of the Transformer Encoder. Args: x (torch.Tensor): Node feature tensor. y (torch.Tensor): Edge feature tensor. Returns: tuple: (final node features, final edge features) after processing through all encoder blocks. """ for block in self.Encoder_Blocks: x, y = block(x, y) return x, y