Spaces:
Running
Running
File size: 11,494 Bytes
dd49f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
from datetime import datetime
import pickle
import os
import multiprocessing
from tqdm import tqdm
from sklearn.svm import SVC
from sklearn.linear_model import SGDClassifier
from sklearn.model_selection import cross_val_predict, KFold
from skmultilearn.problem_transform import BinaryRelevance
from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, hamming_loss
aspect_type = ""
dataset_type = ""
representation_dataframe = ""
representation_name = ""
detailed_output = False
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
def check_for_at_least_two_class_sample_exits(y):
for column in y:
column_sum = np.sum(y[column].array)
if column_sum < 2:
print('At least 2 positive samples are required for each class {0} class has {1} positive samples'.format(column,column_sum))
return False
return True
def create_valid_kfold_object_for_multilabel_splits(X,y,kf):
check_for_at_least_two_class_sample_exits(y)
sample_class_occurance = dict(zip(y.columns,np.zeros(len(y.columns))))
for column in y:
for fold_train_index,fold_test_index in kf.split(X,y):
fold_col_sum = np.sum(y.iloc[fold_test_index,:][column].array)
if fold_col_sum > 0:
sample_class_occurance[column] += 1
for key in sample_class_occurance:
value = sample_class_occurance[key]
if value < 2:
random_state = np.random.randint(1000)
print("Random state is changed since at least two positive samples are required in different train/test folds.\
\nHowever, only one fold exits with positive samples for class {0}".format(key))
print("Selected random state is {0}".format(random_state))
kf = KFold(n_splits=5, shuffle=True, random_state=random_state)
create_valid_kfold_object_for_multilabel_splits(X,y,kf)
else:
return kf
def MultiLabelSVC_cross_val_predict(representation_name, dataset, X, y, classifier):
#dataset split, estimator, cv
clf = classifier
Xn = np.array(np.asarray(X.values.tolist()), dtype=float)
kf_init = KFold(n_splits=5, shuffle=True, random_state=42)
kf = create_valid_kfold_object_for_multilabel_splits(X,y,kf_init)
y_pred = cross_val_predict(clf, Xn, y, cv=kf)
if detailed_output:
with open(r"../results/Ontology_based_function_prediction_{1}_{0}_model.pkl".format(representation_name,dataset.split(".")[0]),"wb") as file:
pickle.dump(clf,file)
acc_cv = []
f1_mi_cv = []
f1_ma_cv = []
f1_we_cv = []
pr_mi_cv = []
pr_ma_cv = []
pr_we_cv = []
rc_mi_cv = []
rc_ma_cv = []
rc_we_cv = []
hamm_cv = []
for fold_train_index,fold_test_index in kf.split(X,y):
acc = accuracy_score(y.iloc[fold_test_index,:],y_pred[fold_test_index])
acc_cv.append(np.round(acc,decimals=5))
f1_mi = f1_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="micro")
f1_mi_cv.append(np.round(f1_mi,decimals=5))
f1_ma = f1_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="macro")
f1_ma_cv.append(np.round(f1_ma,decimals=5))
f1_we = f1_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="weighted")
f1_we_cv.append(np.round(f1_we,decimals=5))
pr_mi = precision_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="micro")
pr_mi_cv.append(np.round(pr_mi,decimals=5))
pr_ma = precision_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="macro")
pr_ma_cv.append(np.round(pr_ma,decimals=5))
pr_we = precision_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="weighted")
pr_we_cv.append(np.round(pr_we,decimals=5))
rc_mi = recall_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="micro")
rc_mi_cv.append(np.round(rc_mi,decimals=5))
rc_ma = recall_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="macro")
rc_ma_cv.append(np.round(rc_ma,decimals=5))
rc_we = recall_score(y.iloc[fold_test_index,:],y_pred[fold_test_index],average="weighted")
rc_we_cv.append(np.round(rc_we,decimals=5))
hamm = hamming_loss(y.iloc[fold_test_index,:],y_pred[fold_test_index])
hamm_cv.append(np.round(hamm,decimals=5))
means = list(np.mean([acc_cv,f1_mi_cv,f1_ma_cv,f1_we_cv,pr_mi_cv,pr_ma_cv,pr_we_cv,rc_mi_cv,rc_ma_cv,rc_we_cv,hamm_cv], axis=1))
means = [np.round(i,decimals=5) for i in means]
stds = list(np.std([acc_cv,f1_mi_cv,f1_ma_cv,f1_we_cv,pr_mi_cv,pr_ma_cv,pr_we_cv,rc_mi_cv,rc_ma_cv,rc_we_cv,hamm_cv], axis=1))
stds = [np.round(i,decimals=5) for i in stds]
return ([representation_name+"_"+dataset,acc_cv,f1_mi_cv,f1_ma_cv,f1_we_cv,pr_mi_cv,pr_ma_cv,pr_we_cv,rc_mi_cv,rc_ma_cv,rc_we_cv,hamm_cv],\
[representation_name+"_"+dataset]+means,\
[representation_name+"_"+dataset]+stds,\
y_pred)
def ProtDescModel():
#desc_file = pd.read_csv(r"protein_representations\final\{0}_dim{1}.tsv".format(representation_name,desc_dim),sep="\t")
datasets = os.listdir(r"../data/auxilary_input/GO_datasets")
if dataset_type == "All_Data_Sets" and aspect_type == "All_Aspects":
filtered_datasets = datasets
elif dataset_type == "All_Data_Sets":
filtered_datasets = [dataset for dataset in datasets if aspect_type in dataset]
elif aspect_type == "All_Aspects":
filtered_datasets = [dataset for dataset in datasets if dataset_type in dataset]
else:
filtered_datasets = [dataset for dataset in datasets if aspect_type in dataset and dataset_type in dataset]
cv_results = []
cv_mean_results = []
cv_std_results = []
for dt in tqdm(filtered_datasets,total=len(filtered_datasets)):
print(r"Protein function prediction is started for the dataset: {0}".format(dt.split(".")[0]))
dt_file = pd.read_csv(r"../data/auxilary_input/GO_datasets/{0}".format(dt),sep="\t")
dt_merge = dt_file.merge(representation_dataframe,left_on="Protein_Id",right_on="Entry")
dt_X = dt_merge['Vector']
dt_y = dt_merge.iloc[:,1:-2]
if check_for_at_least_two_class_sample_exits(dt_y) == False:
print(r"No funtion will be predicted for the dataset: {0}".format(dt.split(".")[0]))
continue
#print("raw dt vs. dt_merge: {} - {}".format(len(dt_file),len(dt_merge)))
#print("Calculating predictions for " + dt.split(".")[0])
#model = MultiLabelSVC_cross_val_predict(representation_name, dt.split(".")[0], dt_X, dt_y, classifier=BinaryRelevance(SVC(kernel="linear", random_state=42)))
cpu_number = multiprocessing.cpu_count()
model = MultiLabelSVC_cross_val_predict(representation_name, dt.split(".")[0], dt_X, dt_y, classifier=BinaryRelevance(SGDClassifier(n_jobs=cpu_number, random_state=42)))
cv_results.append(model[0])
cv_mean_results.append(model[1])
cv_std_results.append(model[2])
predictions = dt_merge.iloc[:,:6]
predictions["predicted_values"] = list(model[3].toarray())
if detailed_output:
predictions.to_csv(r"../results/Ontology_based_function_prediction_{1}_{0}_predictions.tsv".format(representation_name,dt.split(".")[0]),sep="\t",index=None)
return (cv_results, cv_mean_results,cv_std_results)
#def pred_output(representation_name, desc_dim):
def pred_output():
model = ProtDescModel()
cv_result = model[0]
df_cv_result = pd.DataFrame({"Model": pd.Series([], dtype='str') ,"Accuracy": pd.Series([], dtype='float'),"F1_Micro": pd.Series([], dtype='float'),\
"F1_Macro": pd.Series([], dtype='float'),"F1_Weighted": pd.Series([], dtype='float'),"Precision_Micro": pd.Series([], dtype='float'),\
"Precision_Macro": pd.Series([], dtype='float'),"Precision_Weighted": pd.Series([], dtype='float'),"Recall_Micro": pd.Series([], dtype='float'),\
"Recall_Macro": pd.Series([], dtype='float'),"Recall_Weighted": pd.Series([], dtype='float'),"Hamming_Distance": pd.Series([], dtype='float')})
for i in cv_result:
df_cv_result.loc[len(df_cv_result)] = i
if detailed_output:
df_cv_result.to_csv(r"../results/Ontology_based_function_prediction_5cv_{0}.tsv".format(representation_name),sep="\t",index=None)
cv_mean_result = model[1]
df_cv_mean_result = pd.DataFrame({"Model": pd.Series([], dtype='str') ,"Accuracy": pd.Series([], dtype='float'),"F1_Micro": pd.Series([], dtype='float'),\
"F1_Macro": pd.Series([], dtype='float'),"F1_Weighted": pd.Series([], dtype='float'),"Precision_Micro": pd.Series([], dtype='float'),\
"Precision_Macro": pd.Series([], dtype='float'),"Precision_Weighted": pd.Series([], dtype='float'),"Recall_Micro": pd.Series([], dtype='float'),\
"Recall_Macro": pd.Series([], dtype='float'),"Recall_Weighted": pd.Series([], dtype='float'),"Hamming_Distance": pd.Series([], dtype='float')})
#pd.DataFrame(columns=["Model","Accuracy","F1_Micro","F1_Macro","F1_Weighted","Precision_Micro","Precision_Macro","Precision_Weighted",\
# "Recall_Micro","Recall_Macro","Recall_Weighted","Hamming_Distance"])
for j in cv_mean_result:
df_cv_mean_result.loc[len(df_cv_mean_result)] = j
df_cv_mean_result.to_csv(r"../results/Ontology_based_function_prediction_5cv_mean_{0}.tsv".format(representation_name),sep="\t",index=None)
#save std deviation of scores to file
cv_std_result = model[2]
df_cv_std_result = pd.DataFrame({"Model": pd.Series([], dtype='str') ,"Accuracy": pd.Series([], dtype='float'),"F1_Micro": pd.Series([], dtype='float'),\
"F1_Macro": pd.Series([], dtype='float'),"F1_Weighted": pd.Series([], dtype='float'),"Precision_Micro": pd.Series([], dtype='float'),\
"Precision_Macro": pd.Series([], dtype='float'),"Precision_Weighted": pd.Series([], dtype='float'),"Recall_Micro": pd.Series([], dtype='float'),\
"Recall_Macro": pd.Series([], dtype='float'),"Recall_Weighted": pd.Series([], dtype='float'),"Hamming_Distance": pd.Series([], dtype='float')})
#pd.DataFrame(columns=["Model","Accuracy","F1_Micro","F1_Macro","F1_Weighted","Precision_Micro","Precision_Macro","Precision_Weighted",\
# "Recall_Micro","Recall_Macro","Recall_Weighted","Hamming_Distance"])
for k in cv_std_result:
df_cv_std_result.loc[len(df_cv_std_result)] = k
df_cv_std_result.to_csv(r"../results/Ontology_based_function_prediction_5cv_std_{0}.tsv".format(representation_name),sep="\t",index=None)
print(datetime.now())
# tcga = pred_output("tcga","50")
# protvec = pred_output("protvec","100")
# unirep = pred_output("unirep","5700")
# gene2vec = pred_output("gene2vec","200")
# learned_embed = pred_output("learned_embed","64")
# mut2vec = pred_output("mut2vec","300")
# seqvec = pred_output("seqvec","1024")
#bepler = pred_output("bepler","100")
# resnet_rescaled = pred_output("resnet-rescaled","256")
# transformer_avg = pred_output("transformer","768")
# transformer_pool = pred_output("transformer-pool","768")
# apaac = pred_output("apaac","80")
#ksep = pred_output("ksep","400")
|