Spaces:
Running
Running
File size: 8,028 Bytes
dd49f8a 794f79d dd49f8a 794f79d dd49f8a 794f79d dd49f8a 794f79d dd49f8a 794f79d dd49f8a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
#!/usr/bin/env python
# coding: utf-8
import os
script_dir = os.path.dirname(os.path.abspath(__file__))
import pandas as pd
import numpy as np
import gzip
import itertools
import multiprocessing
import csv
import pickle
import random
from sklearn.metrics.pairwise import cosine_similarity as cosine
from sklearn.metrics import mean_squared_error as mse
from tqdm import tqdm, tqdm_notebook
from multiprocessing import Manager, Pool
from scipy.spatial.distance import cdist
from numpy.linalg import norm
from scipy.stats import spearmanr, pearsonr
from functools import partial
manager = Manager()
similarity_list = manager.list()
proteinListNew = manager.list()
representation_dataframe = ""
protein_names = ""
# define similarity_list and proteinList as global variables
representation_name = ""
similarity_tasks = ""
detailed_output = False
def parallelSimilarity(paramList):
protein_embedding_dataframe = representation_dataframe
i = paramList[0]
j = paramList[1]
aspect = paramList[2]
if j>i:
protein1 = proteinListNew[i]
protein2 = proteinListNew[j]
if protein1 in protein_names and protein2 in protein_names:
prot1vec = np.asarray(protein_embedding_dataframe.query("Entry == @protein1")['Vector'].item())
prot2vec = np.asarray(protein_embedding_dataframe.query("Entry == @protein2")['Vector'].item())
#cosine will return in shape of input vectors first dimension
cos = cosine(prot1vec.reshape(1,-1),prot2vec.reshape(1,-1)).item()
manhattanDist = cdist(prot1vec.reshape(1,-1), prot2vec.reshape(1,-1), 'cityblock')
manhattanDistNorm = manhattanDist/(norm(prot1vec,1) + norm(prot2vec,1))
manhattanSim = 1-manhattanDistNorm.item()
if (norm(prot1vec,1)==0 and norm(prot2vec,1) == 0):
manhattanSim = 1.0
#print((protein1,protein2))
#print(manhattanDist)
#print(norm(prot1vec,1))
#print(norm(prot2vec,1))
euclideanDist = cdist(prot1vec.reshape(1,-1), prot2vec.reshape(1,-1), 'euclidean')
euclideanDistNorm = euclideanDist/(norm(prot1vec,2) + norm(prot2vec,2))
euclidianSim = 1-euclideanDistNorm.item()
if (norm(prot1vec,1)==0 and norm(prot2vec,1) == 0):
euclidianSim = 1.0
real = paramList[3]
# To ensure real and calculated values appended to same postion they saved similtanously and then decoupled
similarity_list.append((real,cos,manhattanSim ,euclidianSim))
return similarity_list
def calculateCorrelationforOntology(aspect,matrix_type):
print("\n\nSemantic similarity correlation calculation for aspect: " + aspect + " using matrix/dataset: " + matrix_type + " ...\n")
#Clear lists before each aspect
similarity_list[:] = []
proteinListNew[:] = []
similarityMatrixNameDict = {}
similarityMatrixNameDict["All"] = os.path.join(script_dir, "../data/preprocess/human_"+aspect+"_proteinSimilarityMatrix.csv")
similarityMatrixNameDict["500"] = os.path.join(script_dir, "../data/preprocess/human_"+aspect+"_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv")
similarityMatrixNameDict["Sparse"] = os.path.join(script_dir, "../data/preprocess/human_"+aspect+"_proteinSimilarityMatrix_for_highest_annotated_500_proteins.csv")
similarityMatrixNameDict["200"] = os.path.join(script_dir, "../data/preprocess/human_"+aspect+"_proteinSimilarityMatrix_for_highest_annotated_200_proteins.csv")
similarityMatrixFileName = similarityMatrixNameDict[matrix_type]
human_proteinSimilarityMatrix = pd.read_csv(similarityMatrixFileName)
human_proteinSimilarityMatrix.set_index(human_proteinSimilarityMatrix.columns, inplace = True)
proteinList = human_proteinSimilarityMatrix.columns
#proteinListNew is referanced using Manager
for prot in proteinList:
proteinListNew.append(prot)
if matrix_type == "Sparse":
#sparsified_similarities = np.load("SparsifiedSimilarites_for_highest_500.npy")
sparsified_path = os.path.join(script_dir, "../data/auxilary_input/SparsifiedSimilarityCoordinates_"+aspect+"_for_highest_500.npy")
sparsified_similarity_coordinates = np.load(sparsified_path)
protParamList = sparsified_similarity_coordinates
else:
i = range(len(proteinList))
j = range(len(proteinList))
protParamList = list(itertools.product(i,j))
protParamListNew = []
# Prepare parameters for parallel processing these parameters will be
# used concurrently by different processes
for tup in tqdm(protParamList):
i = tup[0]
j = tup[1]
if matrix_type == "Sparse":
protein1 = proteinListNew[i]
protein2 = proteinListNew[j]
real = human_proteinSimilarityMatrix.loc[protein1,protein2]
tupNew = (tup[0],tup[1],aspect,real)
protParamListNew.append(tupNew)
else:
if j > i:
protein1 = proteinListNew[i]
protein2 = proteinListNew[j]
real = human_proteinSimilarityMatrix.loc[protein1,protein2]
tupNew = (tup[0],tup[1],aspect,real)
protParamListNew.append(tupNew)
total_task_num=len(protParamListNew)
pool = Pool()
similarity_listRet = []
#parallelSimilarityPartial = partial(parallelSimilarity,protein_embedding_type)
for similarity_listRet in tqdm(pool.imap_unordered(parallelSimilarity,protParamListNew), total=total_task_num , position=0, leave=True ):
pass
#time.sleep(0.1)
pool.close()
pool.join()
real_distance_list = [value[0] for value in similarity_listRet]
cosine_distance_list = [value[1] for value in similarity_listRet]
manhattan_distance_list = [value[2] for value in similarity_listRet]
euclidian_distance_list = [value[3] for value in similarity_listRet]
distance_lists = [real_distance_list,cosine_distance_list,manhattan_distance_list,euclidian_distance_list]
if detailed_output:
report_detailed_distance_scores(representation_name,matrix_type,aspect,distance_lists)
cosineCorr = spearmanr(real_distance_list, cosine_distance_list)
manhattanCorr = spearmanr(real_distance_list, manhattan_distance_list)
euclidianCorr = spearmanr(real_distance_list, euclidian_distance_list)
#print("Cosine Correlation for "+aspect+" is " + str(cosineCorr))
#print("Manhattan Correlation for "+aspect+" is " + str(manhattanCorr))
#print("Euclidian Correlation for "+aspect+" is " + str(euclidianCorr))
return (cosineCorr,manhattanCorr,euclidianCorr)
def report_detailed_distance_scores(representation_name,similarity_matrix_type,aspect,distance_lists):
saveFileName = os.path.join(script_dir, "../results/Semantic_sim_inference_detailed_distance_scores"+aspect+"_"+similarity_matrix_type+"_"+representation_name+".pkl")
with open(saveFileName, "wb") as f:
pickle.dump(distance_lists, f)
def calculate_all_correlations():
for similarity_matrix_type in similarity_tasks:
saveFileName = os.path.join(script_dir, "../results/Semantic_sim_inference_"+similarity_matrix_type+"_"+representation_name+".csv")
buffer = "Semantic Aspect,CosineSim_Correlation,CosineSim_Correlation p-value, ManhattanSim_Correlation,ManhattanSim_Correlation p-value, EuclidianSim_Correlation,EuclidianSim_Correlation p-value \n"
f = open(saveFileName,'w')
f.write(buffer)
for aspect in ["MF","BP","CC"]:
corr = calculateCorrelationforOntology(aspect,similarity_matrix_type)
buffer = "" + aspect + ","+ str(round(corr[0][0],5))+ ","+ str(round(corr[0][1],5))+ ","+ str(round(corr[1][0],5))\
+ ","+ str(round(corr[1][1],5))+ ","+ str(round(corr[2][0],5))+ ","+str(round(corr[2][1],5))+"\n"
f = open(saveFileName,'a')
f.write(buffer)
f.close()
|