Spaces:
Running
Running
File size: 16,511 Bytes
1cc2077 25f445b b90013e dc9c8a6 4826928 df66c51 b12fa6d df66c51 1cc2077 3e6bf0e a2e6203 1cc2077 3624a97 1cc2077 2781be6 d10decd 72f465f 1cc2077 b12fa6d cdf41df 11d1b83 cdf41df 11d1b83 cdf41df 56d7438 b363799 1cc2077 b972165 7f7ea9c b12fa6d 56d7438 7f7ea9c b12fa6d 72f465f e1bfbc1 b12fa6d 7f7ea9c 72f465f 1cc2077 b12fa6d 90fcb15 37c0c8d 8cc60a4 b20cd7e b12fa6d 56d7438 1cc2077 b90013e b12fa6d 1cc2077 524ef7e b12fa6d 508ed01 90fcb15 51bfc88 b12fa6d c0e572f b12fa6d 51bfc88 b12fa6d 51bfc88 c0e572f b12fa6d c0e572f 51bfc88 b12fa6d 51bfc88 b12fa6d 508ed01 51bfc88 6962b8e 761c866 6962b8e 51bfc88 b12fa6d 51bfc88 c0e572f 51bfc88 b12fa6d 51bfc88 6962b8e b12fa6d 6962b8e b12fa6d 101c8c7 b12fa6d 51bfc88 6962b8e b12fa6d 51bfc88 b12fa6d f24fa7c 51bfc88 b12fa6d 51bfc88 b12fa6d 1cc2077 fe897f2 b12fa6d fe897f2 b12fa6d 1cc2077 b12fa6d 72f465f 1cc2077 72f465f 1cc2077 c806fef b12fa6d c806fef b12fa6d c806fef b12fa6d c806fef 6323d6b 72f465f 6323d6b 72f465f 1b91391 b12fa6d d280876 b12fa6d d280876 b12fa6d d280876 b12fa6d d280876 b12fa6d d280876 1cc2077 b90013e 1cc2077 b12fa6d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']
import gradio as gr
import pandas as pd
import re
import os
import json
import yaml
import matplotlib.pyplot as plt
import seaborn as sns
import plotnine as p9
import sys
import zipfile
import tempfile
sys.path.append('./src')
sys.path.append('.')
from src.about import *
from src.saving_utils import *
from src.vis_utils import *
from src.bin.PROBE import run_probe
def add_new_eval(
human_file,
skempi_file,
model_name_textbox: str,
revision_name_textbox: str,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
save,
):
# Validate required files based on selected benchmarks
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
return -1
if 'affinity' in benchmark_types and skempi_file is None:
gr.Warning("SKEMPI representations are required for affinity benchmark!")
return -1
processing_info = gr.Info("Your submission is being processed...")
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
try:
results = run_probe(
benchmark_types,
representation_name,
human_file,
skempi_file,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
)
except Exception as e:
gr.Warning("Your submission has not been processed. Please check your representation files!")
return -1
# Even if save is False, we store the submission (e.g., temporarily) so that the leaderboard includes it.
if save:
save_results(representation_name, benchmark_types, results)
else:
save_results(representation_name, benchmark_types, results, temporary=True)
return 0
def refresh_data():
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
for benchmark_type in benchmark_types:
path = f"/tmp/{benchmark_type}_results.csv"
if os.path.exists(path):
os.remove(path)
benchmark_types.remove("leaderboard")
download_from_hub(benchmark_types)
def download_leaderboard_csv():
"""Generates a CSV file for the updated leaderboard."""
df = get_baseline_df(None, None)
tmp_csv = os.path.join(tempfile.gettempdir(), "leaderboard_download.csv")
df.to_csv(tmp_csv, index=False)
return tmp_csv
def generate_plots_based_on_submission(benchmark_types, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset):
"""
For each benchmark type selected during submission, generate a plot based on the corresponding extra parameters.
"""
tmp_dir = tempfile.mkdtemp()
plot_files = []
# Get the current leaderboard to retrieve available method names.
leaderboard = get_baseline_df(None, None)
method_names = leaderboard['Method'].unique().tolist()
for btype in benchmark_types:
# For each benchmark type, choose plotting parameters based on additional selections.
if btype == "similarity":
# Use the user-selected similarity tasks (if provided) to determine the metrics.
x_metric = similarity_tasks[0] if similarity_tasks and len(similarity_tasks) > 0 else None
y_metric = similarity_tasks[1] if similarity_tasks and len(similarity_tasks) > 1 else None
elif btype == "function":
x_metric = function_prediction_aspect if function_prediction_aspect else None
y_metric = function_prediction_dataset if function_prediction_dataset else None
elif btype == "family":
# For family, assume that family_prediction_dataset is a list of datasets.
x_metric = family_prediction_dataset[0] if family_prediction_dataset and len(family_prediction_dataset) > 0 else None
y_metric = family_prediction_dataset[1] if family_prediction_dataset and len(family_prediction_dataset) > 1 else None
elif btype == "affinity":
# For affinity, you may use default plotting parameters.
x_metric, y_metric = None, None
else:
x_metric, y_metric = None, None
# Generate the plot using your benchmark_plot function.
# Here, aspect, dataset, and single_metric are passed as None, but you could extend this logic.
plot_img = benchmark_plot(btype, method_names, x_metric, y_metric, None, None, None)
plot_file = os.path.join(tmp_dir, f"{btype}.png")
if isinstance(plot_img, plt.Figure):
plot_img.savefig(plot_file)
plt.close(plot_img)
else:
# If benchmark_plot already returns a file path, use it directly.
plot_file = plot_img
plot_files.append(plot_file)
# Zip all plot images
zip_path = os.path.join(tmp_dir, "submission_plots.zip")
with zipfile.ZipFile(zip_path, "w") as zipf:
for file in plot_files:
zipf.write(file, arcname=os.path.basename(file))
return zip_path
def submission_callback(
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
save_checkbox,
return_option, # New radio selection: "Leaderboard CSV" or "Plot Results"
):
"""
Runs the evaluation and then returns either a downloadable CSV of the leaderboard
(which includes the new submission) or a ZIP file of plots generated based on the submission's selections.
"""
eval_status = add_new_eval(
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
save_checkbox,
)
if eval_status == -1:
return "Submission failed. Please check your files and selections.", None
if return_option == "Leaderboard CSV":
csv_path = download_leaderboard_csv()
return "Your leaderboard CSV (including your submission) is ready for download.", csv_path
elif return_option == "Plot Results":
zip_path = generate_plots_based_on_submission(
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_prediction_dataset,
family_prediction_dataset,
)
return "Your plots are ready for download.", zip_path
else:
return "Submission processed, but no output option was selected.", None
# --------------------------
# Build the Gradio interface
# --------------------------
block = gr.Blocks()
with block:
gr.Markdown(LEADERBOARD_INTRODUCTION)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
# Leaderboard tab (unchanged from before)
leaderboard = get_baseline_df(None, None)
method_names = leaderboard['Method'].unique().tolist()
metric_names = leaderboard.columns.tolist()
metrics_with_method = metric_names.copy()
metric_names.remove('Method')
benchmark_metric_mapping = {
"similarity": [metric for metric in metric_names if metric.startswith('sim_')],
"function": [metric for metric in metric_names if metric.startswith('func')],
"family": [metric for metric in metric_names if metric.startswith('fam_')],
"affinity": [metric for metric in metric_names if metric.startswith('aff_')],
}
leaderboard_method_selector = gr.CheckboxGroup(
choices=method_names,
label="Select Methods for the Leaderboard",
value=method_names,
interactive=True
)
benchmark_type_selector = gr.CheckboxGroup(
choices=list(benchmark_metric_mapping.keys()),
label="Select Benchmark Types",
value=None,
interactive=True
)
leaderboard_metric_selector = gr.CheckboxGroup(
choices=metric_names,
label="Select Metrics for the Leaderboard",
value=None,
interactive=True
)
baseline_value = get_baseline_df(method_names, metric_names)
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
baseline_header = ["Method"] + metric_names
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
with gr.Row(show_progress=True, variant='panel'):
data_component = gr.components.Dataframe(
value=baseline_value,
headers=baseline_header,
type="pandas",
datatype=baseline_datatype,
interactive=False,
visible=True,
)
leaderboard_method_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
benchmark_type_selector.change(
lambda selected_benchmarks: update_metrics(selected_benchmarks),
inputs=[benchmark_type_selector],
outputs=leaderboard_metric_selector
)
leaderboard_metric_selector.change(
get_baseline_df,
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
outputs=data_component
)
with gr.Row():
gr.Markdown(
"""
## **Visualize the Leaderboard Results**
Select options to update the visualization.
"""
)
# (Plotting section remains available as before; not the focus of the submission callback)
benchmark_type_selector_plot = gr.Dropdown(
choices=list(benchmark_specific_metrics.keys()),
label="Select Benchmark Type for Plotting",
value=None
)
with gr.Row():
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
method_selector = gr.CheckboxGroup(
choices=method_names,
label="Select Methods to Visualize",
interactive=True,
value=method_names
)
plot_button = gr.Button("Plot")
with gr.Row(show_progress=True, variant='panel'):
plot_output = gr.Image(label="Plot")
benchmark_type_selector_plot.change(
update_metric_choices,
inputs=[benchmark_type_selector_plot],
outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector]
)
plot_button.click(
benchmark_plot,
inputs=[benchmark_type_selector_plot, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector],
outputs=plot_output
)
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
with gr.Row():
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Image(
value="./src/data/PROBE_workflow_figure.jpg",
label="PROBE Workflow Figure",
elem_classes="about-image",
)
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
with gr.Row():
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Row():
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Method name")
revision_name_textbox = gr.Textbox(label="Revision Method Name")
benchmark_types = gr.CheckboxGroup(
choices=TASK_INFO,
label="Benchmark Types",
interactive=True,
)
similarity_tasks = gr.CheckboxGroup(
choices=similarity_tasks_options,
label="Similarity Tasks (if selected)",
interactive=True,
)
function_prediction_aspect = gr.Radio(
choices=function_prediction_aspect_options,
label="Function Prediction Aspects (if selected)",
interactive=True,
)
family_prediction_dataset = gr.CheckboxGroup(
choices=family_prediction_dataset_options,
label="Family Prediction Datasets (if selected)",
interactive=True,
)
function_dataset = gr.Textbox(
label="Function Prediction Datasets",
visible=False,
value="All_Data_Sets"
)
save_checkbox = gr.Checkbox(
label="Save results for leaderboard and visualization",
value=True
)
with gr.Row():
human_file = gr.components.File(
label="The representation file (csv) for Human dataset",
file_count="single",
type='filepath'
)
skempi_file = gr.components.File(
label="The representation file (csv) for SKEMPI dataset",
file_count="single",
type='filepath'
)
# New radio button for output selection.
return_option = gr.Radio(
choices=["Leaderboard CSV", "Plot Results"],
label="Return Output",
value="Leaderboard CSV",
interactive=True,
)
submit_button = gr.Button("Submit Eval")
submission_result_msg = gr.Markdown()
submission_result_file = gr.File()
submit_button.click(
submission_callback,
inputs=[
human_file,
skempi_file,
model_name_textbox,
revision_name_textbox,
benchmark_types,
similarity_tasks,
function_prediction_aspect,
function_dataset,
family_prediction_dataset,
save_checkbox,
return_option,
],
outputs=[submission_result_msg, submission_result_file]
)
with gr.Row():
data_run = gr.Button("Refresh")
data_run.click(refresh_data, outputs=[data_component])
with gr.Accordion("Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
elem_id="citation-button",
show_copy_button=True,
)
block.launch() |