File size: 4,488 Bytes
1cc2077
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions']

import gradio as gr
import pandas as pd
import re
import pandas as pd
import os
import json

from src.about import *

global data_component, filter_component


def get_baseline_df():
    df = pd.read_csv(CSV_RESULT_PATH)
    present_columns = ["Method"] + checkbox_group.value
    df = df[present_columns]
    return df

def add_new_eval(
    human_file,
    skempi_file,
    model_name_textbox: str,
    revision_name_textbox: str,
    benchmark_type: str,
):
    representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
    print(representation_name)
    # Save human and skempi files under ./src/data/representation_vectors using pandas
    if human_file is not None:
        human_df = pd.read_csv(human_file)
        human_df.to_csv(f"./src/data/representation_vectors/{representation_name}_human.csv", index=False)

    return None

block = gr.Blocks()

with block:
    gr.Markdown(
        LEADERBOARD_INTRODUCTION
    )
    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        # table jmmmu bench
        with gr.TabItem("🏅 PROBE Benchmark", elem_id="probe-benchmark-tab-table", id=1):
            # selection for column part:
            checkbox_group = gr.CheckboxGroup(
                choices=TASK_INFO,
                label="Benchmark Type",
                interactive=True,
            ) # user can select the evaluation dimension

            baseline_value = get_baseline_df()
            baseline_header = ["Method"] + checkbox_group.value
            baseline_datatype = ['markdown'] + ['number'] * len(checkbox_group.value)

            data_component = gr.components.Dataframe(
                value=baseline_value,
                headers=baseline_header,
                type="pandas",
                datatype=baseline_datatype,
                interactive=False,
                visible=True,
                )

        # table 5
        with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
            with gr.Row():
                gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")

        with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
            with gr.Row():
                gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")

            with gr.Row():
                gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")

            with gr.Row():
                with gr.Column():
                    model_name_textbox = gr.Textbox(
                        label="Model name",
                        )
                    revision_name_textbox = gr.Textbox(
                        label="Revision Model Name",
                    )
                    # Selection for benchmark type from (similartiy, family, function, affinity) to eval the representations (chekbox)
                    benchmark_type = gr.CheckboxGroup(
                        choices=TASK_INFO,
                        label="Benchmark Type",
                        interactive=True,
                    )

            with gr.Column():
                human_file = gr.components.File(label="Click to Upload the representation file (csv) for Human dataset", file_count="single", type='binary')
                skempi_file = gr.components.File(label="Click to Upload the representation file (csv) for SKEMPI dataset", file_count="single", type='binary')
    
                submit_button = gr.Button("Submit Eval")
                submission_result = gr.Markdown()
                submit_button.click(
                    add_new_eval,
                    inputs = [
                        human_file,
                        skempi_file,
                        model_name_textbox,
                        revision_name_textbox,
                        benchmark_type
                    ],
                )

    def refresh_data():
        value = get_baseline_df()

        return value

    with gr.Row():
        data_run = gr.Button("Refresh")
        data_run.click(
            refresh_data, outputs=[data_component]
        )

    with gr.Accordion("Citation", open=False):
        citation_button = gr.Textbox(
            value=CITATION_BUTTON_TEXT,
            label=CITATION_BUTTON_LABEL,
            elem_id="citation-button",
            show_copy_button=True,
        )

block.launch()