Spaces:
Running
Running
__all__ = ['block', 'make_clickable_model', 'make_clickable_user', 'get_submissions'] | |
import gradio as gr | |
import pandas as pd | |
import re | |
import os | |
import json | |
import yaml | |
import matplotlib.pyplot as plt | |
import seaborn as sns | |
import plotnine as p9 | |
import sys | |
import zipfile | |
import tempfile | |
sys.path.append('./src') | |
sys.path.append('.') | |
from src.about import * | |
from src.saving_utils import * | |
from src.vis_utils import * | |
from src.bin.PROBE import run_probe | |
def add_new_eval( | |
human_file, | |
skempi_file, | |
model_name_textbox: str, | |
revision_name_textbox: str, | |
benchmark_types, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_prediction_dataset, | |
family_prediction_dataset, | |
save, | |
): | |
# Validate required files based on selected benchmarks | |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None: | |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!") | |
return -1 | |
if 'affinity' in benchmark_types and skempi_file is None: | |
gr.Warning("SKEMPI representations are required for affinity benchmark!") | |
return -1 | |
processing_info = gr.Info("Your submission is being processed...") | |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox | |
try: | |
results = run_probe( | |
benchmark_types, | |
representation_name, | |
human_file, | |
skempi_file, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_prediction_dataset, | |
family_prediction_dataset, | |
) | |
except Exception as e: | |
gr.Warning("Your submission has not been processed. Please check your representation files!") | |
return -1 | |
# Even if save is False, we store the submission (e.g., temporarily) so that the leaderboard includes it. | |
if save: | |
save_results(representation_name, benchmark_types, results) | |
else: | |
save_results(representation_name, benchmark_types, results, temporary=True) | |
return 0 | |
def refresh_data(): | |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"] | |
for benchmark_type in benchmark_types: | |
path = f"/tmp/{benchmark_type}_results.csv" | |
if os.path.exists(path): | |
os.remove(path) | |
benchmark_types.remove("leaderboard") | |
download_from_hub(benchmark_types) | |
def download_leaderboard_csv(): | |
"""Generates a CSV file for the updated leaderboard.""" | |
df = get_baseline_df(None, None) | |
tmp_csv = os.path.join(tempfile.gettempdir(), "leaderboard_download.csv") | |
df.to_csv(tmp_csv, index=False) | |
return tmp_csv | |
def generate_plots_based_on_submission(benchmark_types, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset): | |
""" | |
For each benchmark type selected during submission, generate a plot based on the corresponding extra parameters. | |
""" | |
tmp_dir = tempfile.mkdtemp() | |
plot_files = [] | |
# Get the current leaderboard to retrieve available method names. | |
leaderboard = get_baseline_df(None, None) | |
method_names = leaderboard['Method'].unique().tolist() | |
for btype in benchmark_types: | |
# For each benchmark type, choose plotting parameters based on additional selections. | |
if btype == "similarity": | |
# Use the user-selected similarity tasks (if provided) to determine the metrics. | |
x_metric = similarity_tasks[0] if similarity_tasks and len(similarity_tasks) > 0 else None | |
y_metric = similarity_tasks[1] if similarity_tasks and len(similarity_tasks) > 1 else None | |
elif btype == "function": | |
x_metric = function_prediction_aspect if function_prediction_aspect else None | |
y_metric = function_prediction_dataset if function_prediction_dataset else None | |
elif btype == "family": | |
# For family, assume that family_prediction_dataset is a list of datasets. | |
x_metric = family_prediction_dataset[0] if family_prediction_dataset and len(family_prediction_dataset) > 0 else None | |
y_metric = family_prediction_dataset[1] if family_prediction_dataset and len(family_prediction_dataset) > 1 else None | |
elif btype == "affinity": | |
# For affinity, you may use default plotting parameters. | |
x_metric, y_metric = None, None | |
else: | |
x_metric, y_metric = None, None | |
# Generate the plot using your benchmark_plot function. | |
# Here, aspect, dataset, and single_metric are passed as None, but you could extend this logic. | |
plot_img = benchmark_plot(btype, method_names, x_metric, y_metric, None, None, None) | |
plot_file = os.path.join(tmp_dir, f"{btype}.png") | |
if isinstance(plot_img, plt.Figure): | |
plot_img.savefig(plot_file) | |
plt.close(plot_img) | |
else: | |
# If benchmark_plot already returns a file path, use it directly. | |
plot_file = plot_img | |
plot_files.append(plot_file) | |
# Zip all plot images | |
zip_path = os.path.join(tmp_dir, "submission_plots.zip") | |
with zipfile.ZipFile(zip_path, "w") as zipf: | |
for file in plot_files: | |
zipf.write(file, arcname=os.path.basename(file)) | |
return zip_path | |
def submission_callback( | |
human_file, | |
skempi_file, | |
model_name_textbox, | |
revision_name_textbox, | |
benchmark_types, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_prediction_dataset, | |
family_prediction_dataset, | |
save_checkbox, | |
return_option, # New radio selection: "Leaderboard CSV" or "Plot Results" | |
): | |
""" | |
Runs the evaluation and then returns either a downloadable CSV of the leaderboard | |
(which includes the new submission) or a ZIP file of plots generated based on the submission's selections. | |
""" | |
eval_status = add_new_eval( | |
human_file, | |
skempi_file, | |
model_name_textbox, | |
revision_name_textbox, | |
benchmark_types, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_prediction_dataset, | |
family_prediction_dataset, | |
save_checkbox, | |
) | |
if eval_status == -1: | |
return "Submission failed. Please check your files and selections.", None | |
if return_option == "Leaderboard CSV": | |
csv_path = download_leaderboard_csv() | |
return "Your leaderboard CSV (including your submission) is ready for download.", csv_path | |
elif return_option == "Plot Results": | |
zip_path = generate_plots_based_on_submission( | |
benchmark_types, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_prediction_dataset, | |
family_prediction_dataset, | |
) | |
return "Your plots are ready for download.", zip_path | |
else: | |
return "Submission processed, but no output option was selected.", None | |
# -------------------------- | |
# Build the Gradio interface | |
# -------------------------- | |
block = gr.Blocks() | |
with block: | |
gr.Markdown(LEADERBOARD_INTRODUCTION) | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1): | |
# Leaderboard tab (unchanged from before) | |
leaderboard = get_baseline_df(None, None) | |
method_names = leaderboard['Method'].unique().tolist() | |
metric_names = leaderboard.columns.tolist() | |
metrics_with_method = metric_names.copy() | |
metric_names.remove('Method') | |
benchmark_metric_mapping = { | |
"similarity": [metric for metric in metric_names if metric.startswith('sim_')], | |
"function": [metric for metric in metric_names if metric.startswith('func')], | |
"family": [metric for metric in metric_names if metric.startswith('fam_')], | |
"affinity": [metric for metric in metric_names if metric.startswith('aff_')], | |
} | |
leaderboard_method_selector = gr.CheckboxGroup( | |
choices=method_names, | |
label="Select Methods for the Leaderboard", | |
value=method_names, | |
interactive=True | |
) | |
benchmark_type_selector = gr.CheckboxGroup( | |
choices=list(benchmark_metric_mapping.keys()), | |
label="Select Benchmark Types", | |
value=None, | |
interactive=True | |
) | |
leaderboard_metric_selector = gr.CheckboxGroup( | |
choices=metric_names, | |
label="Select Metrics for the Leaderboard", | |
value=None, | |
interactive=True | |
) | |
baseline_value = get_baseline_df(method_names, metric_names) | |
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x) | |
baseline_header = ["Method"] + metric_names | |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names) | |
with gr.Row(show_progress=True, variant='panel'): | |
data_component = gr.components.Dataframe( | |
value=baseline_value, | |
headers=baseline_header, | |
type="pandas", | |
datatype=baseline_datatype, | |
interactive=False, | |
visible=True, | |
) | |
leaderboard_method_selector.change( | |
get_baseline_df, | |
inputs=[leaderboard_method_selector, leaderboard_metric_selector], | |
outputs=data_component | |
) | |
benchmark_type_selector.change( | |
lambda selected_benchmarks: update_metrics(selected_benchmarks), | |
inputs=[benchmark_type_selector], | |
outputs=leaderboard_metric_selector | |
) | |
leaderboard_metric_selector.change( | |
get_baseline_df, | |
inputs=[leaderboard_method_selector, leaderboard_metric_selector], | |
outputs=data_component | |
) | |
with gr.Row(): | |
gr.Markdown( | |
""" | |
## **Visualize the Leaderboard Results** | |
Select options to update the visualization. | |
""" | |
) | |
# (Plotting section remains available as before; not the focus of the submission callback) | |
benchmark_type_selector_plot = gr.Dropdown( | |
choices=list(benchmark_specific_metrics.keys()), | |
label="Select Benchmark Type for Plotting", | |
value=None | |
) | |
with gr.Row(): | |
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False) | |
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False) | |
aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False) | |
dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False) | |
single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False) | |
method_selector = gr.CheckboxGroup( | |
choices=method_names, | |
label="Select Methods to Visualize", | |
interactive=True, | |
value=method_names | |
) | |
plot_button = gr.Button("Plot") | |
with gr.Row(show_progress=True, variant='panel'): | |
plot_output = gr.Image(label="Plot") | |
benchmark_type_selector_plot.change( | |
update_metric_choices, | |
inputs=[benchmark_type_selector_plot], | |
outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector] | |
) | |
plot_button.click( | |
benchmark_plot, | |
inputs=[benchmark_type_selector_plot, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector], | |
outputs=plot_output | |
) | |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2): | |
with gr.Row(): | |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Image( | |
value="./src/data/PROBE_workflow_figure.jpg", | |
label="PROBE Workflow Figure", | |
elem_classes="about-image", | |
) | |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Row(): | |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Method name") | |
revision_name_textbox = gr.Textbox(label="Revision Method Name") | |
benchmark_types = gr.CheckboxGroup( | |
choices=TASK_INFO, | |
label="Benchmark Types", | |
interactive=True, | |
) | |
similarity_tasks = gr.CheckboxGroup( | |
choices=similarity_tasks_options, | |
label="Similarity Tasks (if selected)", | |
interactive=True, | |
) | |
function_prediction_aspect = gr.Radio( | |
choices=function_prediction_aspect_options, | |
label="Function Prediction Aspects (if selected)", | |
interactive=True, | |
) | |
family_prediction_dataset = gr.CheckboxGroup( | |
choices=family_prediction_dataset_options, | |
label="Family Prediction Datasets (if selected)", | |
interactive=True, | |
) | |
function_dataset = gr.Textbox( | |
label="Function Prediction Datasets", | |
visible=False, | |
value="All_Data_Sets" | |
) | |
save_checkbox = gr.Checkbox( | |
label="Save results for leaderboard and visualization", | |
value=True | |
) | |
with gr.Row(): | |
human_file = gr.components.File( | |
label="The representation file (csv) for Human dataset", | |
file_count="single", | |
type='filepath' | |
) | |
skempi_file = gr.components.File( | |
label="The representation file (csv) for SKEMPI dataset", | |
file_count="single", | |
type='filepath' | |
) | |
# New radio button for output selection. | |
return_option = gr.Radio( | |
choices=["Leaderboard CSV", "Plot Results"], | |
label="Return Output", | |
value="Leaderboard CSV", | |
interactive=True, | |
) | |
submit_button = gr.Button("Submit Eval") | |
submission_result_msg = gr.Markdown() | |
submission_result_file = gr.File() | |
submit_button.click( | |
submission_callback, | |
inputs=[ | |
human_file, | |
skempi_file, | |
model_name_textbox, | |
revision_name_textbox, | |
benchmark_types, | |
similarity_tasks, | |
function_prediction_aspect, | |
function_dataset, | |
family_prediction_dataset, | |
save_checkbox, | |
return_option, | |
], | |
outputs=[submission_result_msg, submission_result_file] | |
) | |
with gr.Row(): | |
data_run = gr.Button("Refresh") | |
data_run.click(refresh_data, outputs=[data_component]) | |
with gr.Accordion("Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
block.launch() |