Spaces:
Running
Running
Update src/saving_utils.py
Browse files- src/saving_utils.py +83 -60
src/saving_utils.py
CHANGED
@@ -76,26 +76,11 @@ def upload_to_hub(benchmark_types, repo_id="mgyigit/probe-data", repo_type="spac
|
|
76 |
return 0
|
77 |
|
78 |
|
79 |
-
def save_csv_locally(dataframe, file_name, save_dir="/tmp"):
|
80 |
-
# Ensure the save directory exists
|
81 |
-
os.makedirs(save_dir, exist_ok=True)
|
82 |
-
|
83 |
-
# Construct the full file path
|
84 |
-
file_path = os.path.join(save_dir, file_name)
|
85 |
-
|
86 |
-
# Save the DataFrame as a CSV
|
87 |
-
dataframe.to_csv(file_path, index=False)
|
88 |
-
print(f"Saved {file_name} to {file_path}")
|
89 |
-
|
90 |
-
return file_path
|
91 |
-
|
92 |
-
|
93 |
def save_similarity_output(
|
94 |
output_dict,
|
95 |
method_name,
|
96 |
leaderboard_path="/tmp/leaderboard_results.csv",
|
97 |
similarity_path="/tmp/similarity_results.csv",
|
98 |
-
repo_id="mgyigit/probe-data",
|
99 |
):
|
100 |
# Load or initialize the DataFrames
|
101 |
if os.path.exists(leaderboard_path):
|
@@ -155,26 +140,42 @@ def save_similarity_output(
|
|
155 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
156 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
157 |
|
158 |
-
|
159 |
-
|
160 |
|
161 |
return 0
|
162 |
|
163 |
-
def save_function_output(model_output, method_name, func_results_path="/home/user/app/src/data/function_results.csv", leaderboard_path="/home/user/app/src/data/leaderboard_results.csv"):
|
164 |
-
# Load or initialize the DataFrames
|
165 |
-
if os.path.exists(func_results_path):
|
166 |
-
func_results_df = pd.read_csv(func_results_path)
|
167 |
-
else:
|
168 |
-
func_results_df = pd.DataFrame(columns=['Method'])
|
169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
if os.path.exists(leaderboard_path):
|
171 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
172 |
else:
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
-
# Ensure the method_name row exists in function results
|
176 |
if method_name not in func_results_df['Method'].values:
|
177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
# Storage for averaging in leaderboard results
|
180 |
metrics_sum = {
|
@@ -193,10 +194,10 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
193 |
aspect, dataset1, dataset2 = key.split('_')
|
194 |
|
195 |
# Save each metric to function_results under its respective column
|
196 |
-
func_results_df.
|
197 |
-
func_results_df.
|
198 |
-
func_results_df.
|
199 |
-
func_results_df.
|
200 |
|
201 |
# Add values for leaderboard averaging
|
202 |
metrics_sum['accuracy'][aspect].append(accuracy)
|
@@ -209,7 +210,7 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
209 |
for aspect in ['BP', 'CC', 'MF']:
|
210 |
if metrics_sum[metric][aspect]:
|
211 |
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
212 |
-
leaderboard_df.
|
213 |
|
214 |
# Calculate overall average if each aspect has entries
|
215 |
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
|
@@ -217,7 +218,7 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
217 |
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
218 |
for aspect in ['BP', 'CC', 'MF']
|
219 |
) / 3
|
220 |
-
leaderboard_df.
|
221 |
|
222 |
# Save updated DataFrames to CSV
|
223 |
func_results_df.to_csv(func_results_path, index=False)
|
@@ -225,69 +226,91 @@ def save_function_output(model_output, method_name, func_results_path="/home/use
|
|
225 |
|
226 |
return 0
|
227 |
|
228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
229 |
# Load or initialize the DataFrames
|
230 |
if os.path.exists(leaderboard_path):
|
231 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
232 |
else:
|
233 |
-
|
|
|
234 |
|
235 |
if os.path.exists(family_results_path):
|
236 |
family_results_df = pd.read_csv(family_results_path)
|
237 |
else:
|
238 |
-
|
|
|
239 |
|
240 |
-
# Ensure the method_name row exists in the leaderboard results
|
241 |
-
if method_name not in leaderboard_df['Method'].values:
|
242 |
-
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
243 |
-
|
244 |
-
# Ensure the method_name row exists in family results
|
245 |
if method_name not in family_results_df['Method'].values:
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
# Iterate through the datasets and metrics
|
249 |
for dataset, metrics in model_output.items():
|
250 |
for metric, values in metrics.items():
|
251 |
# Calculate the average for each metric in leaderboard results
|
252 |
avg_value = sum(values) / len(values) if values else None
|
253 |
-
leaderboard_df.
|
254 |
|
255 |
# Save each fold result for family results
|
256 |
for i, value in enumerate(values):
|
257 |
-
family_results_df.
|
258 |
|
259 |
# Save updated DataFrames to CSV
|
260 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|
261 |
family_results_df.to_csv(family_results_path, index=False)
|
262 |
|
263 |
-
return
|
|
|
264 |
|
265 |
-
def save_affinity_output(
|
266 |
-
|
|
|
|
|
|
|
|
|
|
|
267 |
if os.path.exists(leaderboard_path):
|
268 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
269 |
else:
|
270 |
-
|
|
|
271 |
|
272 |
if os.path.exists(affinity_results_path):
|
273 |
affinity_results_df = pd.read_csv(affinity_results_path)
|
274 |
else:
|
275 |
-
|
|
|
276 |
|
277 |
-
# Ensure the method_name row exists in the leaderboard results
|
278 |
-
if method_name not in leaderboard_df['Method'].values:
|
279 |
-
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame({'Method': [method_name]})], ignore_index=True)
|
280 |
-
|
281 |
-
# Ensure the method_name row exists in affinity results
|
282 |
if method_name not in affinity_results_df['Method'].values:
|
283 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
|
285 |
# Process 'summary' section for leaderboard results
|
286 |
summary = model_output.get('summary', {})
|
287 |
if summary:
|
288 |
-
leaderboard_df.
|
289 |
-
leaderboard_df.
|
290 |
-
leaderboard_df.
|
291 |
|
292 |
# Process 'detail' section for affinity results
|
293 |
detail = model_output.get('detail', {})
|
@@ -295,11 +318,11 @@ def save_affinity_output(model_output, method_name, leaderboard_path="/home/user
|
|
295 |
# Save each 10-fold cross-validation result for mse, mae, and corr
|
296 |
for i in range(10):
|
297 |
if 'val_mse_errors' in detail:
|
298 |
-
affinity_results_df.
|
299 |
if 'val_mae_errors' in detail:
|
300 |
-
affinity_results_df.
|
301 |
if 'validation_corrs' in detail:
|
302 |
-
affinity_results_df.
|
303 |
|
304 |
# Save updated DataFrames to CSV
|
305 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|
|
|
76 |
return 0
|
77 |
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
def save_similarity_output(
|
80 |
output_dict,
|
81 |
method_name,
|
82 |
leaderboard_path="/tmp/leaderboard_results.csv",
|
83 |
similarity_path="/tmp/similarity_results.csv",
|
|
|
84 |
):
|
85 |
# Load or initialize the DataFrames
|
86 |
if os.path.exists(leaderboard_path):
|
|
|
140 |
similarity_df.loc[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
141 |
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
|
142 |
|
143 |
+
leaderboard_df.to_csv(leaderboard_path, index=False)
|
144 |
+
similarity_df.to_csv(similarity_path, index=False)
|
145 |
|
146 |
return 0
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
+
def save_function_output(
|
150 |
+
model_output,
|
151 |
+
method_name,
|
152 |
+
func_results_path="/tmp/function_results.csv",
|
153 |
+
leaderboard_path="/tmp/leaderboard_results.csv"
|
154 |
+
):
|
155 |
+
# Load or initialize the DataFrames
|
156 |
if os.path.exists(leaderboard_path):
|
157 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
158 |
else:
|
159 |
+
print("Leaderboard file not found!")
|
160 |
+
return -1
|
161 |
+
|
162 |
+
if os.path.exists(func_results_path):
|
163 |
+
func_results_df = pd.read_csv(func_results_path)
|
164 |
+
else:
|
165 |
+
print("Function file not found!")
|
166 |
+
return -1
|
167 |
|
|
|
168 |
if method_name not in func_results_df['Method'].values:
|
169 |
+
# Create a new row for the method with default values
|
170 |
+
new_row = {col: None for col in func_results_df.columns}
|
171 |
+
new_row['Method'] = method_name
|
172 |
+
func_results_df = pd.concat([func_results_df, pd.DataFrame([new_row])], ignore_index=True)
|
173 |
+
|
174 |
+
if method_name not in leaderboard_df['Method'].values:
|
175 |
+
new_row = {col: None for col in leaderboard_df.columns}
|
176 |
+
new_row['Method'] = method_name
|
177 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
178 |
+
|
179 |
|
180 |
# Storage for averaging in leaderboard results
|
181 |
metrics_sum = {
|
|
|
194 |
aspect, dataset1, dataset2 = key.split('_')
|
195 |
|
196 |
# Save each metric to function_results under its respective column
|
197 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_accuracy"] = accuracy
|
198 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_F1"] = f1
|
199 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_precision"] = precision
|
200 |
+
func_results_df.loc[func_results_df['Method'] == method_name, f"{aspect}_{dataset1}_{dataset2}_recall"] = recall
|
201 |
|
202 |
# Add values for leaderboard averaging
|
203 |
metrics_sum['accuracy'][aspect].append(accuracy)
|
|
|
210 |
for aspect in ['BP', 'CC', 'MF']:
|
211 |
if metrics_sum[metric][aspect]:
|
212 |
aspect_average = sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
213 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_{aspect}_{metric}"] = aspect_average
|
214 |
|
215 |
# Calculate overall average if each aspect has entries
|
216 |
if all(metrics_sum[metric][aspect] for aspect in ['BP', 'CC', 'MF']):
|
|
|
218 |
sum(metrics_sum[metric][aspect]) / len(metrics_sum[metric][aspect])
|
219 |
for aspect in ['BP', 'CC', 'MF']
|
220 |
) / 3
|
221 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"func_Ave_{metric}"] = overall_average
|
222 |
|
223 |
# Save updated DataFrames to CSV
|
224 |
func_results_df.to_csv(func_results_path, index=False)
|
|
|
226 |
|
227 |
return 0
|
228 |
|
229 |
+
|
230 |
+
def save_family_output(
|
231 |
+
model_output,
|
232 |
+
method_name,
|
233 |
+
leaderboard_path="/tmp/leaderboard_results.csv",
|
234 |
+
family_results_path="/tmp/family_results.csv"
|
235 |
+
):
|
236 |
# Load or initialize the DataFrames
|
237 |
if os.path.exists(leaderboard_path):
|
238 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
239 |
else:
|
240 |
+
print("Leaderboard file not found!")
|
241 |
+
return -1
|
242 |
|
243 |
if os.path.exists(family_results_path):
|
244 |
family_results_df = pd.read_csv(family_results_path)
|
245 |
else:
|
246 |
+
print("Family file not found!")
|
247 |
+
return -1
|
248 |
|
|
|
|
|
|
|
|
|
|
|
249 |
if method_name not in family_results_df['Method'].values:
|
250 |
+
# Create a new row for the method with default values
|
251 |
+
new_row = {col: None for col in family_results_df.columns}
|
252 |
+
new_row['Method'] = method_name
|
253 |
+
family_results_df = pd.concat([family_results_df, pd.DataFrame([new_row])], ignore_index=True)
|
254 |
+
|
255 |
+
if method_name not in leaderboard_df['Method'].values:
|
256 |
+
new_row = {col: None for col in leaderboard_df.columns}
|
257 |
+
new_row['Method'] = method_name
|
258 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
259 |
|
260 |
# Iterate through the datasets and metrics
|
261 |
for dataset, metrics in model_output.items():
|
262 |
for metric, values in metrics.items():
|
263 |
# Calculate the average for each metric in leaderboard results
|
264 |
avg_value = sum(values) / len(values) if values else None
|
265 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, f"fam_{dataset}_{metric}_ave"] = avg_value
|
266 |
|
267 |
# Save each fold result for family results
|
268 |
for i, value in enumerate(values):
|
269 |
+
family_results_df.loc[family_results_df['Method'] == method_name, f"{dataset}_{metric}_{i}"] = value
|
270 |
|
271 |
# Save updated DataFrames to CSV
|
272 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|
273 |
family_results_df.to_csv(family_results_path, index=False)
|
274 |
|
275 |
+
return 0
|
276 |
+
|
277 |
|
278 |
+
def save_affinity_output(
|
279 |
+
model_output,
|
280 |
+
method_name,
|
281 |
+
leaderboard_path="/tmp/leaderboard_results.csv",
|
282 |
+
affinity_results_path="/tmp/affinity_results.csv"
|
283 |
+
):
|
284 |
+
# Load or initialize the DataFrames
|
285 |
if os.path.exists(leaderboard_path):
|
286 |
leaderboard_df = pd.read_csv(leaderboard_path)
|
287 |
else:
|
288 |
+
print("Leaderboard file not found!")
|
289 |
+
return -1
|
290 |
|
291 |
if os.path.exists(affinity_results_path):
|
292 |
affinity_results_df = pd.read_csv(affinity_results_path)
|
293 |
else:
|
294 |
+
print("Affinity file not found!")
|
295 |
+
return -1
|
296 |
|
|
|
|
|
|
|
|
|
|
|
297 |
if method_name not in affinity_results_df['Method'].values:
|
298 |
+
# Create a new row for the method with default values
|
299 |
+
new_row = {col: None for col in affinity_results_df.columns}
|
300 |
+
new_row['Method'] = method_name
|
301 |
+
affinity_results_df = pd.concat([affinity_results_df, pd.DataFrame([new_row])], ignore_index=True)
|
302 |
+
|
303 |
+
if method_name not in leaderboard_df['Method'].values:
|
304 |
+
new_row = {col: None for col in leaderboard_df.columns}
|
305 |
+
new_row['Method'] = method_name
|
306 |
+
leaderboard_df = pd.concat([leaderboard_df, pd.DataFrame([new_row])], ignore_index=True)
|
307 |
|
308 |
# Process 'summary' section for leaderboard results
|
309 |
summary = model_output.get('summary', {})
|
310 |
if summary:
|
311 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mse_ave'] = summary.get('val_mse_error')
|
312 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_mae_ave'] = summary.get('val_mae_error')
|
313 |
+
leaderboard_df.loc[leaderboard_df['Method'] == method_name, 'aff_corr_ave'] = summary.get('validation_corr')
|
314 |
|
315 |
# Process 'detail' section for affinity results
|
316 |
detail = model_output.get('detail', {})
|
|
|
318 |
# Save each 10-fold cross-validation result for mse, mae, and corr
|
319 |
for i in range(10):
|
320 |
if 'val_mse_errors' in detail:
|
321 |
+
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mse_{i}"] = detail['val_mse_errors'][i]
|
322 |
if 'val_mae_errors' in detail:
|
323 |
+
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"mae_{i}"] = detail['val_mae_errors'][i]
|
324 |
if 'validation_corrs' in detail:
|
325 |
+
affinity_results_df.loc[affinity_results_df['Method'] == method_name, f"corr_{i}"] = detail['validation_corrs'][i]
|
326 |
|
327 |
# Save updated DataFrames to CSV
|
328 |
leaderboard_df.to_csv(leaderboard_path, index=False)
|