mgyigit commited on
Commit
956252d
·
verified ·
1 Parent(s): 17c3e5b

Update src/saving_utils.py

Browse files
Files changed (1) hide show
  1. src/saving_utils.py +4 -4
src/saving_utils.py CHANGED
@@ -40,24 +40,24 @@ def save_similarity_output(output_dict, method_name, leaderboard_path="./data/le
40
  if correlation_key in output_dict:
41
  correlation_values.append(output_dict[correlation_key])
42
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
43
- leaderboard_df.at[0, f"sim_{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
44
 
45
  # Process pvalue if present
46
  if pvalue_key in output_dict:
47
  pvalue_values.append(output_dict[pvalue_key])
48
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
49
- leaderboard_df.at[0, f"sim_{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
50
 
51
  # Calculate averages if all three aspects (MF, BP, CC) are present
52
  if len(correlation_values) == 3:
53
  averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
54
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
55
- leaderboard_df.at[0, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
56
 
57
  if len(pvalue_values) == 3:
58
  averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
59
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
60
- leaderboard_df.at[0, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
61
 
62
  # Save the updated DataFrames back to CSV
63
  leaderboard_df.to_csv(leaderboard_path, index=False)
 
40
  if correlation_key in output_dict:
41
  correlation_values.append(output_dict[correlation_key])
42
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
43
+ leaderboard_df.at[leaderboard_df['Method'] == method_name, f"sim_{dataset}_{aspect}_correlation"] = output_dict[correlation_key]
44
 
45
  # Process pvalue if present
46
  if pvalue_key in output_dict:
47
  pvalue_values.append(output_dict[pvalue_key])
48
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
49
+ leaderboard_df.at[leaderboard_df['Method'] == method_name, f"sim_{dataset}_{aspect}_pvalue"] = output_dict[pvalue_key]
50
 
51
  # Calculate averages if all three aspects (MF, BP, CC) are present
52
  if len(correlation_values) == 3:
53
  averages[f"{dataset}_Ave_correlation"] = sum(correlation_values) / 3
54
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
55
+ leaderboard_df.at[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_correlation"] = averages[f"{dataset}_Ave_correlation"]
56
 
57
  if len(pvalue_values) == 3:
58
  averages[f"{dataset}_Ave_pvalue"] = sum(pvalue_values) / 3
59
  similarity_df.at[similarity_df['Method'] == method_name, f"{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
60
+ leaderboard_df.at[leaderboard_df['Method'] == method_name, f"sim_{dataset}_Ave_pvalue"] = averages[f"{dataset}_Ave_pvalue"]
61
 
62
  # Save the updated DataFrames back to CSV
63
  leaderboard_df.to_csv(leaderboard_path, index=False)