mgyigit commited on
Commit
b696eae
·
verified ·
1 Parent(s): 39e623c

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +97 -198
app.py CHANGED
@@ -10,11 +10,13 @@ import matplotlib.pyplot as plt
10
  import seaborn as sns
11
  import plotnine as p9
12
  import sys
13
- import zipfile
14
- import tempfile
15
  sys.path.append('./src')
16
  sys.path.append('.')
17
 
 
 
 
 
18
  from src.about import *
19
  from src.saving_utils import *
20
  from src.vis_utils import *
@@ -33,10 +35,10 @@ def add_new_eval(
33
  family_prediction_dataset,
34
  save,
35
  ):
36
- # Validate required files based on selected benchmarks
37
  if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
38
  gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
39
  return -1
 
40
  if 'affinity' in benchmark_types and skempi_file is None:
41
  gr.Warning("SKEMPI representations are required for affinity benchmark!")
42
  return -1
@@ -46,161 +48,59 @@ def add_new_eval(
46
  representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
47
 
48
  try:
49
- results = run_probe(
50
- benchmark_types,
51
- representation_name,
52
- human_file,
53
- skempi_file,
54
- similarity_tasks,
55
- function_prediction_aspect,
56
- function_prediction_dataset,
57
- family_prediction_dataset,
58
- )
59
- except Exception as e:
60
- gr.Warning("Your submission has not been processed. Please check your representation files!")
61
  return -1
62
 
63
- # Even if save is False, we store the submission (e.g., temporarily) so that the leaderboard includes it.
64
  if save:
65
  save_results(representation_name, benchmark_types, results)
 
 
66
  else:
67
- save_results(representation_name, benchmark_types, results, temporary=True)
68
 
69
  return 0
70
 
71
-
72
  def refresh_data():
 
73
  benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
 
74
  for benchmark_type in benchmark_types:
75
  path = f"/tmp/{benchmark_type}_results.csv"
76
  if os.path.exists(path):
77
  os.remove(path)
 
78
  benchmark_types.remove("leaderboard")
79
  download_from_hub(benchmark_types)
80
 
81
-
82
- def download_leaderboard_csv():
83
- """Generates a CSV file for the updated leaderboard."""
84
- df = get_baseline_df(None, None)
85
- tmp_csv = os.path.join(tempfile.gettempdir(), "leaderboard_download.csv")
86
- df.to_csv(tmp_csv, index=False)
87
- return tmp_csv
88
-
89
-
90
- def generate_plots_based_on_submission(benchmark_types, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset):
91
- """
92
- For each benchmark type selected during submission, generate a plot based on the corresponding extra parameters.
93
- """
94
- tmp_dir = tempfile.mkdtemp()
95
- plot_files = []
96
- # Get the current leaderboard to retrieve available method names.
97
- leaderboard = get_baseline_df(None, None)
98
- method_names = leaderboard['Method'].unique().tolist()
99
-
100
- for btype in benchmark_types:
101
- # For each benchmark type, choose plotting parameters based on additional selections.
102
- if btype == "similarity":
103
- # Use the user-selected similarity tasks (if provided) to determine the metrics.
104
- x_metric = similarity_tasks[0] if similarity_tasks and len(similarity_tasks) > 0 else None
105
- y_metric = similarity_tasks[1] if similarity_tasks and len(similarity_tasks) > 1 else None
106
- elif btype == "function":
107
- x_metric = function_prediction_aspect if function_prediction_aspect else None
108
- y_metric = function_prediction_dataset if function_prediction_dataset else None
109
- elif btype == "family":
110
- # For family, assume that family_prediction_dataset is a list of datasets.
111
- x_metric = family_prediction_dataset[0] if family_prediction_dataset and len(family_prediction_dataset) > 0 else None
112
- y_metric = family_prediction_dataset[1] if family_prediction_dataset and len(family_prediction_dataset) > 1 else None
113
- elif btype == "affinity":
114
- # For affinity, you may use default plotting parameters.
115
- x_metric, y_metric = None, None
116
- else:
117
- x_metric, y_metric = None, None
118
-
119
- # Generate the plot using your benchmark_plot function.
120
- # Here, aspect, dataset, and single_metric are passed as None, but you could extend this logic.
121
- plot_img = benchmark_plot(btype, method_names, x_metric, y_metric, None, None, None)
122
- plot_file = os.path.join(tmp_dir, f"{btype}.png")
123
- if isinstance(plot_img, plt.Figure):
124
- plot_img.savefig(plot_file)
125
- plt.close(plot_img)
126
- else:
127
- # If benchmark_plot already returns a file path, use it directly.
128
- plot_file = plot_img
129
- plot_files.append(plot_file)
130
-
131
- # Zip all plot images
132
- zip_path = os.path.join(tmp_dir, "submission_plots.zip")
133
- with zipfile.ZipFile(zip_path, "w") as zipf:
134
- for file in plot_files:
135
- zipf.write(file, arcname=os.path.basename(file))
136
- return zip_path
137
-
138
-
139
- def submission_callback(
140
- human_file,
141
- skempi_file,
142
- model_name_textbox,
143
- revision_name_textbox,
144
- benchmark_types,
145
- similarity_tasks,
146
- function_prediction_aspect,
147
- function_prediction_dataset,
148
- family_prediction_dataset,
149
- save_checkbox,
150
- return_option, # New radio selection: "Leaderboard CSV" or "Plot Results"
151
- ):
152
- """
153
- Runs the evaluation and then returns either a downloadable CSV of the leaderboard
154
- (which includes the new submission) or a ZIP file of plots generated based on the submission's selections.
155
- """
156
- eval_status = add_new_eval(
157
- human_file,
158
- skempi_file,
159
- model_name_textbox,
160
- revision_name_textbox,
161
- benchmark_types,
162
- similarity_tasks,
163
- function_prediction_aspect,
164
- function_prediction_dataset,
165
- family_prediction_dataset,
166
- save_checkbox,
167
- )
168
-
169
- if eval_status == -1:
170
- return "Submission failed. Please check your files and selections.", None
171
-
172
- if return_option == "Leaderboard CSV":
173
- csv_path = download_leaderboard_csv()
174
- return "Your leaderboard CSV (including your submission) is ready for download.", csv_path
175
- elif return_option == "Plot Results":
176
- zip_path = generate_plots_based_on_submission(
177
- benchmark_types,
178
- similarity_tasks,
179
- function_prediction_aspect,
180
- function_prediction_dataset,
181
- family_prediction_dataset,
182
- )
183
- return "Your plots are ready for download.", zip_path
184
- else:
185
- return "Submission processed, but no output option was selected.", None
186
-
187
-
188
- # --------------------------
189
- # Build the Gradio interface
190
- # --------------------------
191
  block = gr.Blocks()
192
 
193
  with block:
194
  gr.Markdown(LEADERBOARD_INTRODUCTION)
195
-
196
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
197
  with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
198
- # Leaderboard tab (unchanged from before)
199
- leaderboard = get_baseline_df(None, None)
 
200
  method_names = leaderboard['Method'].unique().tolist()
201
  metric_names = leaderboard.columns.tolist()
202
  metrics_with_method = metric_names.copy()
203
- metric_names.remove('Method')
204
 
205
  benchmark_metric_mapping = {
206
  "similarity": [metric for metric in metric_names if metric.startswith('sim_')],
@@ -208,28 +108,25 @@ with block:
208
  "family": [metric for metric in metric_names if metric.startswith('fam_')],
209
  "affinity": [metric for metric in metric_names if metric.startswith('aff_')],
210
  }
211
-
 
212
  leaderboard_method_selector = gr.CheckboxGroup(
213
- choices=method_names,
214
- label="Select Methods for the Leaderboard",
215
- value=method_names,
216
- interactive=True
217
  )
 
218
  benchmark_type_selector = gr.CheckboxGroup(
219
- choices=list(benchmark_metric_mapping.keys()),
220
- label="Select Benchmark Types",
221
- value=None,
222
  interactive=True
223
  )
224
  leaderboard_metric_selector = gr.CheckboxGroup(
225
- choices=metric_names,
226
- label="Select Metrics for the Leaderboard",
227
- value=None,
228
- interactive=True
229
  )
230
 
 
231
  baseline_value = get_baseline_df(method_names, metric_names)
232
- baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
233
  baseline_header = ["Method"] + metric_names
234
  baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
235
 
@@ -243,80 +140,93 @@ with block:
243
  visible=True,
244
  )
245
 
 
246
  leaderboard_method_selector.change(
247
- get_baseline_df,
248
- inputs=[leaderboard_method_selector, leaderboard_metric_selector],
249
  outputs=data_component
250
  )
 
 
251
  benchmark_type_selector.change(
252
  lambda selected_benchmarks: update_metrics(selected_benchmarks),
253
  inputs=[benchmark_type_selector],
254
  outputs=leaderboard_metric_selector
255
  )
 
256
  leaderboard_metric_selector.change(
257
- get_baseline_df,
258
- inputs=[leaderboard_method_selector, leaderboard_metric_selector],
259
  outputs=data_component
260
  )
261
 
262
  with gr.Row():
263
  gr.Markdown(
264
  """
265
- ## **Visualize the Leaderboard Results**
266
- Select options to update the visualization.
267
  """
268
  )
269
- # (Plotting section remains available as before; not the focus of the submission callback)
270
- benchmark_type_selector_plot = gr.Dropdown(
271
- choices=list(benchmark_specific_metrics.keys()),
272
- label="Select Benchmark Type for Plotting",
273
- value=None
274
- )
275
  with gr.Row():
 
276
  x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
277
  y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
278
  aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
279
  dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
280
  single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
281
- method_selector = gr.CheckboxGroup(
282
- choices=method_names,
283
- label="Select Methods to Visualize",
284
- interactive=True,
285
- value=method_names
286
- )
287
  plot_button = gr.Button("Plot")
 
288
  with gr.Row(show_progress=True, variant='panel'):
289
  plot_output = gr.Image(label="Plot")
290
- benchmark_type_selector_plot.change(
 
 
291
  update_metric_choices,
292
- inputs=[benchmark_type_selector_plot],
293
  outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector]
294
  )
 
295
  plot_button.click(
296
  benchmark_plot,
297
- inputs=[benchmark_type_selector_plot, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector],
298
  outputs=plot_output
299
  )
300
-
301
  with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
302
  with gr.Row():
303
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
304
  with gr.Row():
305
  gr.Image(
306
- value="./src/data/PROBE_workflow_figure.jpg",
307
- label="PROBE Workflow Figure",
308
- elem_classes="about-image",
309
  )
310
-
311
  with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
312
  with gr.Row():
313
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
 
314
  with gr.Row():
315
  gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
 
316
  with gr.Row():
317
  with gr.Column():
318
- model_name_textbox = gr.Textbox(label="Method name")
319
- revision_name_textbox = gr.Textbox(label="Revision Method Name")
 
 
 
 
 
320
  benchmark_types = gr.CheckboxGroup(
321
  choices=TASK_INFO,
322
  label="Benchmark Types",
@@ -324,51 +234,42 @@ with block:
324
  )
325
  similarity_tasks = gr.CheckboxGroup(
326
  choices=similarity_tasks_options,
327
- label="Similarity Tasks (if selected)",
328
  interactive=True,
329
  )
 
330
  function_prediction_aspect = gr.Radio(
331
  choices=function_prediction_aspect_options,
332
- label="Function Prediction Aspects (if selected)",
333
  interactive=True,
334
  )
 
335
  family_prediction_dataset = gr.CheckboxGroup(
336
  choices=family_prediction_dataset_options,
337
- label="Family Prediction Datasets (if selected)",
338
  interactive=True,
339
  )
 
340
  function_dataset = gr.Textbox(
341
  label="Function Prediction Datasets",
342
  visible=False,
343
  value="All_Data_Sets"
344
  )
 
345
  save_checkbox = gr.Checkbox(
346
  label="Save results for leaderboard and visualization",
347
  value=True
348
  )
 
 
349
  with gr.Row():
350
- human_file = gr.components.File(
351
- label="The representation file (csv) for Human dataset",
352
- file_count="single",
353
- type='filepath'
354
- )
355
- skempi_file = gr.components.File(
356
- label="The representation file (csv) for SKEMPI dataset",
357
- file_count="single",
358
- type='filepath'
359
- )
360
- # New radio button for output selection.
361
- return_option = gr.Radio(
362
- choices=["Leaderboard CSV", "Plot Results"],
363
- label="Return Output",
364
- value="Leaderboard CSV",
365
- interactive=True,
366
- )
367
  submit_button = gr.Button("Submit Eval")
368
- submission_result_msg = gr.Markdown()
369
- submission_result_file = gr.File()
370
  submit_button.click(
371
- submission_callback,
372
  inputs=[
373
  human_file,
374
  skempi_file,
@@ -380,9 +281,7 @@ with block:
380
  function_dataset,
381
  family_prediction_dataset,
382
  save_checkbox,
383
- return_option,
384
  ],
385
- outputs=[submission_result_msg, submission_result_file]
386
  )
387
 
388
  with gr.Row():
 
10
  import seaborn as sns
11
  import plotnine as p9
12
  import sys
 
 
13
  sys.path.append('./src')
14
  sys.path.append('.')
15
 
16
+ from huggingface_hub import HfApi
17
+ repo_id = "HUBioDataLab/PROBE"
18
+ api = HfApi()
19
+
20
  from src.about import *
21
  from src.saving_utils import *
22
  from src.vis_utils import *
 
35
  family_prediction_dataset,
36
  save,
37
  ):
 
38
  if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
39
  gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
40
  return -1
41
+
42
  if 'affinity' in benchmark_types and skempi_file is None:
43
  gr.Warning("SKEMPI representations are required for affinity benchmark!")
44
  return -1
 
48
  representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
49
 
50
  try:
51
+ results = run_probe(benchmark_types, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
52
+ except:
53
+ completion_info = gr.Warning("Your submission has not been processed. Please check your representation files!")
 
 
 
 
 
 
 
 
 
54
  return -1
55
 
56
+
57
  if save:
58
  save_results(representation_name, benchmark_types, results)
59
+ completion_info = gr.Info("Your submission has been processed and results are saved!")
60
+
61
  else:
62
+ completion_info = gr.Info("Your submission has been processed!")
63
 
64
  return 0
65
 
 
66
  def refresh_data():
67
+ api.restart_space(repo_id=repo_id)
68
  benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
69
+
70
  for benchmark_type in benchmark_types:
71
  path = f"/tmp/{benchmark_type}_results.csv"
72
  if os.path.exists(path):
73
  os.remove(path)
74
+
75
  benchmark_types.remove("leaderboard")
76
  download_from_hub(benchmark_types)
77
 
78
+ # Define a function to update metrics based on benchmark type selection
79
+ def update_metrics(selected_benchmarks):
80
+ updated_metrics = set()
81
+ for benchmark in selected_benchmarks:
82
+ updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
83
+ return list(updated_metrics)
84
+
85
+ # Define a function to update the leaderboard
86
+ def update_leaderboard(selected_methods, selected_metrics):
87
+ updated_df = get_baseline_df(selected_methods, selected_metrics)
88
+ return updated_df
89
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
90
  block = gr.Blocks()
91
 
92
  with block:
93
  gr.Markdown(LEADERBOARD_INTRODUCTION)
94
+
95
  with gr.Tabs(elem_classes="tab-buttons") as tabs:
96
  with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
97
+
98
+ leaderboard = get_baseline_df(None, None) #get baseline leaderboard without filtering
99
+
100
  method_names = leaderboard['Method'].unique().tolist()
101
  metric_names = leaderboard.columns.tolist()
102
  metrics_with_method = metric_names.copy()
103
+ metric_names.remove('Method') # Remove method_name from the metric options
104
 
105
  benchmark_metric_mapping = {
106
  "similarity": [metric for metric in metric_names if metric.startswith('sim_')],
 
108
  "family": [metric for metric in metric_names if metric.startswith('fam_')],
109
  "affinity": [metric for metric in metric_names if metric.startswith('aff_')],
110
  }
111
+
112
+ # Leaderboard section with method and metric selectors
113
  leaderboard_method_selector = gr.CheckboxGroup(
114
+ choices=method_names, label="Select Methods for the Leaderboard", value=method_names, interactive=True
 
 
 
115
  )
116
+
117
  benchmark_type_selector = gr.CheckboxGroup(
118
+ choices=list(benchmark_metric_mapping.keys()),
119
+ label="Select Benchmark Types",
120
+ value=None, # Initially select all benchmark types
121
  interactive=True
122
  )
123
  leaderboard_metric_selector = gr.CheckboxGroup(
124
+ choices=metric_names, label="Select Metrics for the Leaderboard", value=None, interactive=True
 
 
 
125
  )
126
 
127
+ # Display the filtered leaderboard
128
  baseline_value = get_baseline_df(method_names, metric_names)
129
+ baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x) # Round all numeric values to 4 decimal places
130
  baseline_header = ["Method"] + metric_names
131
  baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
132
 
 
140
  visible=True,
141
  )
142
 
143
+ # Update leaderboard when method/metric selection changes
144
  leaderboard_method_selector.change(
145
+ get_baseline_df,
146
+ inputs=[leaderboard_method_selector, leaderboard_metric_selector],
147
  outputs=data_component
148
  )
149
+
150
+ # Update metrics when benchmark type changes
151
  benchmark_type_selector.change(
152
  lambda selected_benchmarks: update_metrics(selected_benchmarks),
153
  inputs=[benchmark_type_selector],
154
  outputs=leaderboard_metric_selector
155
  )
156
+
157
  leaderboard_metric_selector.change(
158
+ get_baseline_df,
159
+ inputs=[leaderboard_method_selector, leaderboard_metric_selector],
160
  outputs=data_component
161
  )
162
 
163
  with gr.Row():
164
  gr.Markdown(
165
  """
166
+ ## **Below, you can visualize the results displayed in the Leaderboard.**
167
+ ### Once you choose a benchmark type, the related options for metrics, datasets, and other parameters will become visible. Select the methods and metrics of interest from the options to generate visualizations.
168
  """
169
  )
170
+
171
+ # Dropdown for benchmark type
172
+ benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type", value=None)
173
+
 
 
174
  with gr.Row():
175
+ # Dynamic selectors
176
  x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
177
  y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
178
  aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
179
  dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
180
  single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
181
+
182
+ method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
183
+
184
+ # Button to draw the plot for the selected benchmark
185
+
 
186
  plot_button = gr.Button("Plot")
187
+
188
  with gr.Row(show_progress=True, variant='panel'):
189
  plot_output = gr.Image(label="Plot")
190
+
191
+ # Update selectors when benchmark type changes
192
+ benchmark_type_selector.change(
193
  update_metric_choices,
194
+ inputs=[benchmark_type_selector],
195
  outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector]
196
  )
197
+
198
  plot_button.click(
199
  benchmark_plot,
200
+ inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector],
201
  outputs=plot_output
202
  )
203
+
204
  with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
205
  with gr.Row():
206
  gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
207
  with gr.Row():
208
  gr.Image(
209
+ value="./src/data/PROBE_workflow_figure.jpg", # Replace with your image file path or URL
210
+ label="PROBE Workflow Figure", # Optional label
211
+ elem_classes="about-image", # Optional CSS class for styling
212
  )
213
+
214
  with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
215
  with gr.Row():
216
  gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
217
+
218
  with gr.Row():
219
  gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
220
+
221
  with gr.Row():
222
  with gr.Column():
223
+ model_name_textbox = gr.Textbox(
224
+ label="Method name",
225
+ )
226
+ revision_name_textbox = gr.Textbox(
227
+ label="Revision Method Name",
228
+ )
229
+
230
  benchmark_types = gr.CheckboxGroup(
231
  choices=TASK_INFO,
232
  label="Benchmark Types",
 
234
  )
235
  similarity_tasks = gr.CheckboxGroup(
236
  choices=similarity_tasks_options,
237
+ label="Similarity Tasks",
238
  interactive=True,
239
  )
240
+
241
  function_prediction_aspect = gr.Radio(
242
  choices=function_prediction_aspect_options,
243
+ label="Function Prediction Aspects",
244
  interactive=True,
245
  )
246
+
247
  family_prediction_dataset = gr.CheckboxGroup(
248
  choices=family_prediction_dataset_options,
249
+ label="Family Prediction Datasets",
250
  interactive=True,
251
  )
252
+
253
  function_dataset = gr.Textbox(
254
  label="Function Prediction Datasets",
255
  visible=False,
256
  value="All_Data_Sets"
257
  )
258
+
259
  save_checkbox = gr.Checkbox(
260
  label="Save results for leaderboard and visualization",
261
  value=True
262
  )
263
+
264
+ #with gr.Column():
265
  with gr.Row():
266
+ human_file = gr.components.File(label="The representation file (csv) for Human dataset", file_count="single", type='filepath')
267
+ skempi_file = gr.components.File(label="The representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
268
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
269
  submit_button = gr.Button("Submit Eval")
270
+ submission_result = gr.Markdown()
 
271
  submit_button.click(
272
+ add_new_eval,
273
  inputs=[
274
  human_file,
275
  skempi_file,
 
281
  function_dataset,
282
  family_prediction_dataset,
283
  save_checkbox,
 
284
  ],
 
285
  )
286
 
287
  with gr.Row():