Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -10,11 +10,13 @@ import matplotlib.pyplot as plt
|
|
10 |
import seaborn as sns
|
11 |
import plotnine as p9
|
12 |
import sys
|
13 |
-
import zipfile
|
14 |
-
import tempfile
|
15 |
sys.path.append('./src')
|
16 |
sys.path.append('.')
|
17 |
|
|
|
|
|
|
|
|
|
18 |
from src.about import *
|
19 |
from src.saving_utils import *
|
20 |
from src.vis_utils import *
|
@@ -33,10 +35,10 @@ def add_new_eval(
|
|
33 |
family_prediction_dataset,
|
34 |
save,
|
35 |
):
|
36 |
-
# Validate required files based on selected benchmarks
|
37 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
38 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
39 |
return -1
|
|
|
40 |
if 'affinity' in benchmark_types and skempi_file is None:
|
41 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
42 |
return -1
|
@@ -46,161 +48,59 @@ def add_new_eval(
|
|
46 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
47 |
|
48 |
try:
|
49 |
-
results = run_probe(
|
50 |
-
|
51 |
-
|
52 |
-
human_file,
|
53 |
-
skempi_file,
|
54 |
-
similarity_tasks,
|
55 |
-
function_prediction_aspect,
|
56 |
-
function_prediction_dataset,
|
57 |
-
family_prediction_dataset,
|
58 |
-
)
|
59 |
-
except Exception as e:
|
60 |
-
gr.Warning("Your submission has not been processed. Please check your representation files!")
|
61 |
return -1
|
62 |
|
63 |
-
|
64 |
if save:
|
65 |
save_results(representation_name, benchmark_types, results)
|
|
|
|
|
66 |
else:
|
67 |
-
|
68 |
|
69 |
return 0
|
70 |
|
71 |
-
|
72 |
def refresh_data():
|
|
|
73 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
|
|
74 |
for benchmark_type in benchmark_types:
|
75 |
path = f"/tmp/{benchmark_type}_results.csv"
|
76 |
if os.path.exists(path):
|
77 |
os.remove(path)
|
|
|
78 |
benchmark_types.remove("leaderboard")
|
79 |
download_from_hub(benchmark_types)
|
80 |
|
81 |
-
|
82 |
-
def
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
"""
|
94 |
-
tmp_dir = tempfile.mkdtemp()
|
95 |
-
plot_files = []
|
96 |
-
# Get the current leaderboard to retrieve available method names.
|
97 |
-
leaderboard = get_baseline_df(None, None)
|
98 |
-
method_names = leaderboard['Method'].unique().tolist()
|
99 |
-
|
100 |
-
for btype in benchmark_types:
|
101 |
-
# For each benchmark type, choose plotting parameters based on additional selections.
|
102 |
-
if btype == "similarity":
|
103 |
-
# Use the user-selected similarity tasks (if provided) to determine the metrics.
|
104 |
-
x_metric = similarity_tasks[0] if similarity_tasks and len(similarity_tasks) > 0 else None
|
105 |
-
y_metric = similarity_tasks[1] if similarity_tasks and len(similarity_tasks) > 1 else None
|
106 |
-
elif btype == "function":
|
107 |
-
x_metric = function_prediction_aspect if function_prediction_aspect else None
|
108 |
-
y_metric = function_prediction_dataset if function_prediction_dataset else None
|
109 |
-
elif btype == "family":
|
110 |
-
# For family, assume that family_prediction_dataset is a list of datasets.
|
111 |
-
x_metric = family_prediction_dataset[0] if family_prediction_dataset and len(family_prediction_dataset) > 0 else None
|
112 |
-
y_metric = family_prediction_dataset[1] if family_prediction_dataset and len(family_prediction_dataset) > 1 else None
|
113 |
-
elif btype == "affinity":
|
114 |
-
# For affinity, you may use default plotting parameters.
|
115 |
-
x_metric, y_metric = None, None
|
116 |
-
else:
|
117 |
-
x_metric, y_metric = None, None
|
118 |
-
|
119 |
-
# Generate the plot using your benchmark_plot function.
|
120 |
-
# Here, aspect, dataset, and single_metric are passed as None, but you could extend this logic.
|
121 |
-
plot_img = benchmark_plot(btype, method_names, x_metric, y_metric, None, None, None)
|
122 |
-
plot_file = os.path.join(tmp_dir, f"{btype}.png")
|
123 |
-
if isinstance(plot_img, plt.Figure):
|
124 |
-
plot_img.savefig(plot_file)
|
125 |
-
plt.close(plot_img)
|
126 |
-
else:
|
127 |
-
# If benchmark_plot already returns a file path, use it directly.
|
128 |
-
plot_file = plot_img
|
129 |
-
plot_files.append(plot_file)
|
130 |
-
|
131 |
-
# Zip all plot images
|
132 |
-
zip_path = os.path.join(tmp_dir, "submission_plots.zip")
|
133 |
-
with zipfile.ZipFile(zip_path, "w") as zipf:
|
134 |
-
for file in plot_files:
|
135 |
-
zipf.write(file, arcname=os.path.basename(file))
|
136 |
-
return zip_path
|
137 |
-
|
138 |
-
|
139 |
-
def submission_callback(
|
140 |
-
human_file,
|
141 |
-
skempi_file,
|
142 |
-
model_name_textbox,
|
143 |
-
revision_name_textbox,
|
144 |
-
benchmark_types,
|
145 |
-
similarity_tasks,
|
146 |
-
function_prediction_aspect,
|
147 |
-
function_prediction_dataset,
|
148 |
-
family_prediction_dataset,
|
149 |
-
save_checkbox,
|
150 |
-
return_option, # New radio selection: "Leaderboard CSV" or "Plot Results"
|
151 |
-
):
|
152 |
-
"""
|
153 |
-
Runs the evaluation and then returns either a downloadable CSV of the leaderboard
|
154 |
-
(which includes the new submission) or a ZIP file of plots generated based on the submission's selections.
|
155 |
-
"""
|
156 |
-
eval_status = add_new_eval(
|
157 |
-
human_file,
|
158 |
-
skempi_file,
|
159 |
-
model_name_textbox,
|
160 |
-
revision_name_textbox,
|
161 |
-
benchmark_types,
|
162 |
-
similarity_tasks,
|
163 |
-
function_prediction_aspect,
|
164 |
-
function_prediction_dataset,
|
165 |
-
family_prediction_dataset,
|
166 |
-
save_checkbox,
|
167 |
-
)
|
168 |
-
|
169 |
-
if eval_status == -1:
|
170 |
-
return "Submission failed. Please check your files and selections.", None
|
171 |
-
|
172 |
-
if return_option == "Leaderboard CSV":
|
173 |
-
csv_path = download_leaderboard_csv()
|
174 |
-
return "Your leaderboard CSV (including your submission) is ready for download.", csv_path
|
175 |
-
elif return_option == "Plot Results":
|
176 |
-
zip_path = generate_plots_based_on_submission(
|
177 |
-
benchmark_types,
|
178 |
-
similarity_tasks,
|
179 |
-
function_prediction_aspect,
|
180 |
-
function_prediction_dataset,
|
181 |
-
family_prediction_dataset,
|
182 |
-
)
|
183 |
-
return "Your plots are ready for download.", zip_path
|
184 |
-
else:
|
185 |
-
return "Submission processed, but no output option was selected.", None
|
186 |
-
|
187 |
-
|
188 |
-
# --------------------------
|
189 |
-
# Build the Gradio interface
|
190 |
-
# --------------------------
|
191 |
block = gr.Blocks()
|
192 |
|
193 |
with block:
|
194 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
195 |
-
|
196 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
197 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
198 |
-
|
199 |
-
leaderboard = get_baseline_df(None, None)
|
|
|
200 |
method_names = leaderboard['Method'].unique().tolist()
|
201 |
metric_names = leaderboard.columns.tolist()
|
202 |
metrics_with_method = metric_names.copy()
|
203 |
-
metric_names.remove('Method')
|
204 |
|
205 |
benchmark_metric_mapping = {
|
206 |
"similarity": [metric for metric in metric_names if metric.startswith('sim_')],
|
@@ -208,28 +108,25 @@ with block:
|
|
208 |
"family": [metric for metric in metric_names if metric.startswith('fam_')],
|
209 |
"affinity": [metric for metric in metric_names if metric.startswith('aff_')],
|
210 |
}
|
211 |
-
|
|
|
212 |
leaderboard_method_selector = gr.CheckboxGroup(
|
213 |
-
choices=method_names,
|
214 |
-
label="Select Methods for the Leaderboard",
|
215 |
-
value=method_names,
|
216 |
-
interactive=True
|
217 |
)
|
|
|
218 |
benchmark_type_selector = gr.CheckboxGroup(
|
219 |
-
choices=list(benchmark_metric_mapping.keys()),
|
220 |
-
label="Select Benchmark Types",
|
221 |
-
value=None,
|
222 |
interactive=True
|
223 |
)
|
224 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
225 |
-
choices=metric_names,
|
226 |
-
label="Select Metrics for the Leaderboard",
|
227 |
-
value=None,
|
228 |
-
interactive=True
|
229 |
)
|
230 |
|
|
|
231 |
baseline_value = get_baseline_df(method_names, metric_names)
|
232 |
-
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x)
|
233 |
baseline_header = ["Method"] + metric_names
|
234 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
235 |
|
@@ -243,80 +140,93 @@ with block:
|
|
243 |
visible=True,
|
244 |
)
|
245 |
|
|
|
246 |
leaderboard_method_selector.change(
|
247 |
-
get_baseline_df,
|
248 |
-
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
249 |
outputs=data_component
|
250 |
)
|
|
|
|
|
251 |
benchmark_type_selector.change(
|
252 |
lambda selected_benchmarks: update_metrics(selected_benchmarks),
|
253 |
inputs=[benchmark_type_selector],
|
254 |
outputs=leaderboard_metric_selector
|
255 |
)
|
|
|
256 |
leaderboard_metric_selector.change(
|
257 |
-
get_baseline_df,
|
258 |
-
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
259 |
outputs=data_component
|
260 |
)
|
261 |
|
262 |
with gr.Row():
|
263 |
gr.Markdown(
|
264 |
"""
|
265 |
-
## **
|
266 |
-
Select options to
|
267 |
"""
|
268 |
)
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
value=None
|
274 |
-
)
|
275 |
with gr.Row():
|
|
|
276 |
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
|
277 |
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
|
278 |
aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
|
279 |
dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
|
280 |
single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
)
|
287 |
plot_button = gr.Button("Plot")
|
|
|
288 |
with gr.Row(show_progress=True, variant='panel'):
|
289 |
plot_output = gr.Image(label="Plot")
|
290 |
-
|
|
|
|
|
291 |
update_metric_choices,
|
292 |
-
inputs=[
|
293 |
outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector]
|
294 |
)
|
|
|
295 |
plot_button.click(
|
296 |
benchmark_plot,
|
297 |
-
inputs=[
|
298 |
outputs=plot_output
|
299 |
)
|
300 |
-
|
301 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
302 |
with gr.Row():
|
303 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
304 |
with gr.Row():
|
305 |
gr.Image(
|
306 |
-
value="./src/data/PROBE_workflow_figure.jpg",
|
307 |
-
label="PROBE Workflow Figure",
|
308 |
-
elem_classes="about-image",
|
309 |
)
|
310 |
-
|
311 |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
|
312 |
with gr.Row():
|
313 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
|
|
314 |
with gr.Row():
|
315 |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
|
|
|
316 |
with gr.Row():
|
317 |
with gr.Column():
|
318 |
-
model_name_textbox = gr.Textbox(
|
319 |
-
|
|
|
|
|
|
|
|
|
|
|
320 |
benchmark_types = gr.CheckboxGroup(
|
321 |
choices=TASK_INFO,
|
322 |
label="Benchmark Types",
|
@@ -324,51 +234,42 @@ with block:
|
|
324 |
)
|
325 |
similarity_tasks = gr.CheckboxGroup(
|
326 |
choices=similarity_tasks_options,
|
327 |
-
label="Similarity Tasks
|
328 |
interactive=True,
|
329 |
)
|
|
|
330 |
function_prediction_aspect = gr.Radio(
|
331 |
choices=function_prediction_aspect_options,
|
332 |
-
label="Function Prediction Aspects
|
333 |
interactive=True,
|
334 |
)
|
|
|
335 |
family_prediction_dataset = gr.CheckboxGroup(
|
336 |
choices=family_prediction_dataset_options,
|
337 |
-
label="Family Prediction Datasets
|
338 |
interactive=True,
|
339 |
)
|
|
|
340 |
function_dataset = gr.Textbox(
|
341 |
label="Function Prediction Datasets",
|
342 |
visible=False,
|
343 |
value="All_Data_Sets"
|
344 |
)
|
|
|
345 |
save_checkbox = gr.Checkbox(
|
346 |
label="Save results for leaderboard and visualization",
|
347 |
value=True
|
348 |
)
|
|
|
|
|
349 |
with gr.Row():
|
350 |
-
human_file = gr.components.File(
|
351 |
-
|
352 |
-
|
353 |
-
type='filepath'
|
354 |
-
)
|
355 |
-
skempi_file = gr.components.File(
|
356 |
-
label="The representation file (csv) for SKEMPI dataset",
|
357 |
-
file_count="single",
|
358 |
-
type='filepath'
|
359 |
-
)
|
360 |
-
# New radio button for output selection.
|
361 |
-
return_option = gr.Radio(
|
362 |
-
choices=["Leaderboard CSV", "Plot Results"],
|
363 |
-
label="Return Output",
|
364 |
-
value="Leaderboard CSV",
|
365 |
-
interactive=True,
|
366 |
-
)
|
367 |
submit_button = gr.Button("Submit Eval")
|
368 |
-
|
369 |
-
submission_result_file = gr.File()
|
370 |
submit_button.click(
|
371 |
-
|
372 |
inputs=[
|
373 |
human_file,
|
374 |
skempi_file,
|
@@ -380,9 +281,7 @@ with block:
|
|
380 |
function_dataset,
|
381 |
family_prediction_dataset,
|
382 |
save_checkbox,
|
383 |
-
return_option,
|
384 |
],
|
385 |
-
outputs=[submission_result_msg, submission_result_file]
|
386 |
)
|
387 |
|
388 |
with gr.Row():
|
|
|
10 |
import seaborn as sns
|
11 |
import plotnine as p9
|
12 |
import sys
|
|
|
|
|
13 |
sys.path.append('./src')
|
14 |
sys.path.append('.')
|
15 |
|
16 |
+
from huggingface_hub import HfApi
|
17 |
+
repo_id = "HUBioDataLab/PROBE"
|
18 |
+
api = HfApi()
|
19 |
+
|
20 |
from src.about import *
|
21 |
from src.saving_utils import *
|
22 |
from src.vis_utils import *
|
|
|
35 |
family_prediction_dataset,
|
36 |
save,
|
37 |
):
|
|
|
38 |
if any(task in benchmark_types for task in ['similarity', 'family', 'function']) and human_file is None:
|
39 |
gr.Warning("Human representations are required for similarity, family, or function benchmarks!")
|
40 |
return -1
|
41 |
+
|
42 |
if 'affinity' in benchmark_types and skempi_file is None:
|
43 |
gr.Warning("SKEMPI representations are required for affinity benchmark!")
|
44 |
return -1
|
|
|
48 |
representation_name = model_name_textbox if revision_name_textbox == '' else revision_name_textbox
|
49 |
|
50 |
try:
|
51 |
+
results = run_probe(benchmark_types, representation_name, human_file, skempi_file, similarity_tasks, function_prediction_aspect, function_prediction_dataset, family_prediction_dataset)
|
52 |
+
except:
|
53 |
+
completion_info = gr.Warning("Your submission has not been processed. Please check your representation files!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
return -1
|
55 |
|
56 |
+
|
57 |
if save:
|
58 |
save_results(representation_name, benchmark_types, results)
|
59 |
+
completion_info = gr.Info("Your submission has been processed and results are saved!")
|
60 |
+
|
61 |
else:
|
62 |
+
completion_info = gr.Info("Your submission has been processed!")
|
63 |
|
64 |
return 0
|
65 |
|
|
|
66 |
def refresh_data():
|
67 |
+
api.restart_space(repo_id=repo_id)
|
68 |
benchmark_types = ["similarity", "function", "family", "affinity", "leaderboard"]
|
69 |
+
|
70 |
for benchmark_type in benchmark_types:
|
71 |
path = f"/tmp/{benchmark_type}_results.csv"
|
72 |
if os.path.exists(path):
|
73 |
os.remove(path)
|
74 |
+
|
75 |
benchmark_types.remove("leaderboard")
|
76 |
download_from_hub(benchmark_types)
|
77 |
|
78 |
+
# Define a function to update metrics based on benchmark type selection
|
79 |
+
def update_metrics(selected_benchmarks):
|
80 |
+
updated_metrics = set()
|
81 |
+
for benchmark in selected_benchmarks:
|
82 |
+
updated_metrics.update(benchmark_metric_mapping.get(benchmark, []))
|
83 |
+
return list(updated_metrics)
|
84 |
+
|
85 |
+
# Define a function to update the leaderboard
|
86 |
+
def update_leaderboard(selected_methods, selected_metrics):
|
87 |
+
updated_df = get_baseline_df(selected_methods, selected_metrics)
|
88 |
+
return updated_df
|
89 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
block = gr.Blocks()
|
91 |
|
92 |
with block:
|
93 |
gr.Markdown(LEADERBOARD_INTRODUCTION)
|
94 |
+
|
95 |
with gr.Tabs(elem_classes="tab-buttons") as tabs:
|
96 |
with gr.TabItem("🏅 PROBE Leaderboard", elem_id="probe-benchmark-tab-table", id=1):
|
97 |
+
|
98 |
+
leaderboard = get_baseline_df(None, None) #get baseline leaderboard without filtering
|
99 |
+
|
100 |
method_names = leaderboard['Method'].unique().tolist()
|
101 |
metric_names = leaderboard.columns.tolist()
|
102 |
metrics_with_method = metric_names.copy()
|
103 |
+
metric_names.remove('Method') # Remove method_name from the metric options
|
104 |
|
105 |
benchmark_metric_mapping = {
|
106 |
"similarity": [metric for metric in metric_names if metric.startswith('sim_')],
|
|
|
108 |
"family": [metric for metric in metric_names if metric.startswith('fam_')],
|
109 |
"affinity": [metric for metric in metric_names if metric.startswith('aff_')],
|
110 |
}
|
111 |
+
|
112 |
+
# Leaderboard section with method and metric selectors
|
113 |
leaderboard_method_selector = gr.CheckboxGroup(
|
114 |
+
choices=method_names, label="Select Methods for the Leaderboard", value=method_names, interactive=True
|
|
|
|
|
|
|
115 |
)
|
116 |
+
|
117 |
benchmark_type_selector = gr.CheckboxGroup(
|
118 |
+
choices=list(benchmark_metric_mapping.keys()),
|
119 |
+
label="Select Benchmark Types",
|
120 |
+
value=None, # Initially select all benchmark types
|
121 |
interactive=True
|
122 |
)
|
123 |
leaderboard_metric_selector = gr.CheckboxGroup(
|
124 |
+
choices=metric_names, label="Select Metrics for the Leaderboard", value=None, interactive=True
|
|
|
|
|
|
|
125 |
)
|
126 |
|
127 |
+
# Display the filtered leaderboard
|
128 |
baseline_value = get_baseline_df(method_names, metric_names)
|
129 |
+
baseline_value = baseline_value.applymap(lambda x: round(x, 4) if isinstance(x, (int, float)) else x) # Round all numeric values to 4 decimal places
|
130 |
baseline_header = ["Method"] + metric_names
|
131 |
baseline_datatype = ['markdown'] + ['number'] * len(metric_names)
|
132 |
|
|
|
140 |
visible=True,
|
141 |
)
|
142 |
|
143 |
+
# Update leaderboard when method/metric selection changes
|
144 |
leaderboard_method_selector.change(
|
145 |
+
get_baseline_df,
|
146 |
+
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
147 |
outputs=data_component
|
148 |
)
|
149 |
+
|
150 |
+
# Update metrics when benchmark type changes
|
151 |
benchmark_type_selector.change(
|
152 |
lambda selected_benchmarks: update_metrics(selected_benchmarks),
|
153 |
inputs=[benchmark_type_selector],
|
154 |
outputs=leaderboard_metric_selector
|
155 |
)
|
156 |
+
|
157 |
leaderboard_metric_selector.change(
|
158 |
+
get_baseline_df,
|
159 |
+
inputs=[leaderboard_method_selector, leaderboard_metric_selector],
|
160 |
outputs=data_component
|
161 |
)
|
162 |
|
163 |
with gr.Row():
|
164 |
gr.Markdown(
|
165 |
"""
|
166 |
+
## **Below, you can visualize the results displayed in the Leaderboard.**
|
167 |
+
### Once you choose a benchmark type, the related options for metrics, datasets, and other parameters will become visible. Select the methods and metrics of interest from the options to generate visualizations.
|
168 |
"""
|
169 |
)
|
170 |
+
|
171 |
+
# Dropdown for benchmark type
|
172 |
+
benchmark_type_selector = gr.Dropdown(choices=list(benchmark_specific_metrics.keys()), label="Select Benchmark Type", value=None)
|
173 |
+
|
|
|
|
|
174 |
with gr.Row():
|
175 |
+
# Dynamic selectors
|
176 |
x_metric_selector = gr.Dropdown(choices=[], label="Select X-axis Metric", visible=False)
|
177 |
y_metric_selector = gr.Dropdown(choices=[], label="Select Y-axis Metric", visible=False)
|
178 |
aspect_type_selector = gr.Dropdown(choices=[], label="Select Aspect Type", visible=False)
|
179 |
dataset_selector = gr.Dropdown(choices=[], label="Select Dataset", visible=False)
|
180 |
single_metric_selector = gr.Dropdown(choices=[], label="Select Metric", visible=False)
|
181 |
+
|
182 |
+
method_selector = gr.CheckboxGroup(choices=method_names, label="Select methods to visualize", interactive=True, value=method_names)
|
183 |
+
|
184 |
+
# Button to draw the plot for the selected benchmark
|
185 |
+
|
|
|
186 |
plot_button = gr.Button("Plot")
|
187 |
+
|
188 |
with gr.Row(show_progress=True, variant='panel'):
|
189 |
plot_output = gr.Image(label="Plot")
|
190 |
+
|
191 |
+
# Update selectors when benchmark type changes
|
192 |
+
benchmark_type_selector.change(
|
193 |
update_metric_choices,
|
194 |
+
inputs=[benchmark_type_selector],
|
195 |
outputs=[x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector]
|
196 |
)
|
197 |
+
|
198 |
plot_button.click(
|
199 |
benchmark_plot,
|
200 |
+
inputs=[benchmark_type_selector, method_selector, x_metric_selector, y_metric_selector, aspect_type_selector, dataset_selector, single_metric_selector],
|
201 |
outputs=plot_output
|
202 |
)
|
203 |
+
|
204 |
with gr.TabItem("📝 About", elem_id="probe-benchmark-tab-table", id=2):
|
205 |
with gr.Row():
|
206 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
207 |
with gr.Row():
|
208 |
gr.Image(
|
209 |
+
value="./src/data/PROBE_workflow_figure.jpg", # Replace with your image file path or URL
|
210 |
+
label="PROBE Workflow Figure", # Optional label
|
211 |
+
elem_classes="about-image", # Optional CSS class for styling
|
212 |
)
|
213 |
+
|
214 |
with gr.TabItem("🚀 Submit here! ", elem_id="probe-benchmark-tab-table", id=3):
|
215 |
with gr.Row():
|
216 |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
217 |
+
|
218 |
with gr.Row():
|
219 |
gr.Markdown("# ✉️✨ Submit your model's representation files here!", elem_classes="markdown-text")
|
220 |
+
|
221 |
with gr.Row():
|
222 |
with gr.Column():
|
223 |
+
model_name_textbox = gr.Textbox(
|
224 |
+
label="Method name",
|
225 |
+
)
|
226 |
+
revision_name_textbox = gr.Textbox(
|
227 |
+
label="Revision Method Name",
|
228 |
+
)
|
229 |
+
|
230 |
benchmark_types = gr.CheckboxGroup(
|
231 |
choices=TASK_INFO,
|
232 |
label="Benchmark Types",
|
|
|
234 |
)
|
235 |
similarity_tasks = gr.CheckboxGroup(
|
236 |
choices=similarity_tasks_options,
|
237 |
+
label="Similarity Tasks",
|
238 |
interactive=True,
|
239 |
)
|
240 |
+
|
241 |
function_prediction_aspect = gr.Radio(
|
242 |
choices=function_prediction_aspect_options,
|
243 |
+
label="Function Prediction Aspects",
|
244 |
interactive=True,
|
245 |
)
|
246 |
+
|
247 |
family_prediction_dataset = gr.CheckboxGroup(
|
248 |
choices=family_prediction_dataset_options,
|
249 |
+
label="Family Prediction Datasets",
|
250 |
interactive=True,
|
251 |
)
|
252 |
+
|
253 |
function_dataset = gr.Textbox(
|
254 |
label="Function Prediction Datasets",
|
255 |
visible=False,
|
256 |
value="All_Data_Sets"
|
257 |
)
|
258 |
+
|
259 |
save_checkbox = gr.Checkbox(
|
260 |
label="Save results for leaderboard and visualization",
|
261 |
value=True
|
262 |
)
|
263 |
+
|
264 |
+
#with gr.Column():
|
265 |
with gr.Row():
|
266 |
+
human_file = gr.components.File(label="The representation file (csv) for Human dataset", file_count="single", type='filepath')
|
267 |
+
skempi_file = gr.components.File(label="The representation file (csv) for SKEMPI dataset", file_count="single", type='filepath')
|
268 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
submit_button = gr.Button("Submit Eval")
|
270 |
+
submission_result = gr.Markdown()
|
|
|
271 |
submit_button.click(
|
272 |
+
add_new_eval,
|
273 |
inputs=[
|
274 |
human_file,
|
275 |
skempi_file,
|
|
|
281 |
function_dataset,
|
282 |
family_prediction_dataset,
|
283 |
save_checkbox,
|
|
|
284 |
],
|
|
|
285 |
)
|
286 |
|
287 |
with gr.Row():
|