File size: 10,894 Bytes
8f4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e78f6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51641fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f4b741
51641fb
 
8f4b741
51641fb
 
8f4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
67e78f6
 
 
 
 
 
8f4b741
51641fb
8f4b741
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
51641fb
 
67e78f6
51641fb
67e78f6
 
 
8f4b741
 
51641fb
 
8f4b741
 
 
 
 
 
 
51641fb
8f4b741
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
from pyvis.network import Network
import os

NODE_TYPE_COLORS = {
 'Disease': '#079dbb',
 'HPO': '#58d0e8',
 'Drug': '#815ac0',
 'Compound': '#d2b7e5',
 'Domain': '#6bbf59',
 'GO_term_P': '#ff8800',
 'GO_term_F': '#ffaa00',
 'GO_term_C': '#ffc300',
 'Pathway': '#720026',
 'kegg_Pathway': '#720026',
 'EC_number': '#ce4257',
 'Protein': '#3aa6a4'
}

EDGE_LABEL_TRANSLATION = {
    'Orthology': 'is ortholog to',
    'Pathway': 'takes part in',
    'kegg_path_prot': 'takes part in',
    'protein_domain': 'has',
    'PPI': 'interacts with',
    'HPO': 'is associated with',
    'kegg_dis_prot': 'is related to',
    'Disease': 'is related to',
    'Drug': 'targets',
    'protein_ec': 'catalyzes',
    'Chembl': 'targets',
    ('protein_function', 'GO_term_F'): 'enables',
    ('protein_function', 'GO_term_P'): 'is involved in',
    ('protein_function', 'GO_term_C'): 'localizes to',    
}

GO_CATEGORY_MAPPING = {
    'Biological Process': 'GO_term_P',
    'Molecular Function': 'GO_term_F',
    'Cellular Component': 'GO_term_C'
}

def _gather_protein_edges(data, protein_id):

    protein_idx = data['Protein']['id_mapping'][protein_id]
    reverse_id_mapping = {}
    for node_type in data.node_types:
        reverse_id_mapping[node_type] = {v:k for k, v in data[node_type]['id_mapping'].items()}
    
    protein_edges = {}

    print(f'Gathering edges for {protein_id}...')

    for edge_type in data.edge_types:
        if 'rev' not in edge_type[1]:
            if edge_type not in protein_edges:
                protein_edges[edge_type] = []
            if edge_type[0] == 'Protein':
                print(f'Gathering edges for {edge_type}...')
                # append the edges with protein_idx as source node
                edges = data[edge_type].edge_index[:, data[edge_type].edge_index[0] == protein_idx]
                protein_edges[edge_type].extend(edges.T.tolist())
            elif edge_type[2] == 'Protein':
                print(f'Gathering edges for {edge_type}...')
                # append the edges with protein_idx as target node
                edges = data[edge_type].edge_index[:, data[edge_type].edge_index[1] == protein_idx]
                protein_edges[edge_type].extend(edges.T.tolist())
    
    for edge_type in protein_edges.keys():
        if protein_edges[edge_type]:
            mapped_edges = set()
            for edge in protein_edges[edge_type]:
                # Get source and target node types from edge_type
                source_type, _, target_type = edge_type
                # Map indices back to original IDs
                source_id = reverse_id_mapping[source_type][edge[0]]
                target_id = reverse_id_mapping[target_type][edge[1]]
                mapped_edges.add((source_id, target_id))
            protein_edges[edge_type] = mapped_edges
        
    return protein_edges

def _filter_edges(protein_id, protein_edges, prediction_df, limit=10):
    filtered_edges = {}
    
    prediction_categories = prediction_df['GO_category'].unique()
    prediction_categories = [GO_CATEGORY_MAPPING[category] for category in prediction_categories]
    go_category_reverse_mapping = {v:k for k, v in GO_CATEGORY_MAPPING.items()}

    for edge_type, edges in protein_edges.items():
        # Skip if edges is empty
        if edges is None or len(edges) == 0:
            continue
            
        if edge_type[2].startswith('GO_term'):  # Check if it's any GO term edge
            if edge_type[2] in prediction_categories:
                # Handle edges for GO terms that are in prediction_df
                category_mask = (prediction_df['GO_category'] == go_category_reverse_mapping[edge_type[2]]) & (prediction_df['UniProt_ID'] == protein_id)
                category_predictions = prediction_df[category_mask]

                if len(category_predictions) > 0:
                    category_predictions = category_predictions.sort_values(by='Probability', ascending=False)
                    edges_set = set(edges)  # Convert to set for O(1) lookup
                    
                    valid_edges = []
                    for _, row in category_predictions.iterrows():
                        term = row['GO_ID']
                        prob = row['Probability']
                        edge = (protein_id, term)
                        is_ground_truth = edge in edges_set
                        valid_edges.append((edge, prob, is_ground_truth))
                        if len(valid_edges) >= limit:
                            break
                    filtered_edges[edge_type] = valid_edges
                else:
                    # If no predictions but it's a GO category in prediction_df
                    filtered_edges[edge_type] = [(edge, 'no_pred', True) for edge in list(edges)[:limit]]
            else:
                # For GO terms not in prediction_df, mark them as ground truth with blue color
                filtered_edges[edge_type] = [(edge, 'no_pred', True) for edge in list(edges)[:limit]]
        else:
            # For non-GO edges, include all edges up to limit
            filtered_edges[edge_type] = [(edge, None, True) for edge in list(edges)[:limit]]

    return filtered_edges


def visualize_protein_subgraph(data, protein_id, prediction_df, limit=10):
    protein_edges = _gather_protein_edges(data, protein_id)
    visualized_edges = _filter_edges(protein_id, protein_edges, prediction_df, limit)
    print(f'Edges to be visualized: {visualized_edges}')

    net = Network(height="600px", width="100%", directed=True, notebook=False)

    # Create groups configuration from NODE_TYPE_COLORS
    groups_config = {}
    for node_type, color in NODE_TYPE_COLORS.items():
            groups_config[node_type] = {
                "color": {"background": color, "border": color}
            }

    # Convert groups_config to a JSON-compatible string
    import json
    groups_json = json.dumps(groups_config)

    # Configure physics options with settings for better clustering
    net.set_options("""{
        "physics": {
            "enabled": true,
            "barnesHut": {
                "gravitationalConstant": -1000,
                "springLength": 250,
                "springConstant": 0.001,
                "damping": 0.09,
                "avoidOverlap": 0
            },
            "forceAtlas2Based": {
                "gravitationalConstant": -50,
                "centralGravity": 0.01,
                "springLength": 100,
                "springConstant": 0.08,
                "damping": 0.4,
                "avoidOverlap": 0
            },
            "solver": "barnesHut",
            "stabilization": {
                "enabled": true,
                "iterations": 1000,
                "updateInterval": 25
            }
        },
        "layout": {
            "improvedLayout": true,
            "hierarchical": {
                "enabled": false
            }
        },
        "interaction": {
            "hover": true,
            "navigationButtons": true,
            "multiselect": true
        },
        "configure": {
            "enabled": true,
            "filter": ["physics", "layout", "manipulation"],
            "showButton": true
        },
        "groups": """ + groups_json + "}")

    # Add the main protein node
    net.add_node(protein_id, 
                 label=f"Protein: {protein_id}", 
                 color={'background': 'white', 'border': '#c1121f'},
                 borderWidth=4,
                 shape="dot", 
                 font={'color': '#000000', 'size': 15},
                 group='Protein',
                 size=30,
                 mass=2.5)

    # Track added nodes to avoid duplication
    added_nodes = {protein_id}

    # Add edges and target nodes
    for edge_type, edges in visualized_edges.items():            
        source_type, relation_type, target_type = edge_type

        if relation_type == 'protein_function':
            relation_type = EDGE_LABEL_TRANSLATION[(relation_type, target_type)]
        else:
            relation_type = EDGE_LABEL_TRANSLATION[relation_type]

        for edge_info in edges:
            edge, probability, is_ground_truth = edge_info 
            source, target = edge[0], edge[1]
            source_str = str(source)
            target_str = str(target)

            # Add source node if not present
            if source_str not in added_nodes:
                net.add_node(source_str, 
                           label=f"{source_str}", 
                           shape="dot", 
                           font={'color': '#000000', 'size': 12},
                           title=f"{source_type}: {source_str}",
                           group=source_type,
                           size=15,
                           mass=1.5)
                added_nodes.add(source_str)

            # Add target node if not present
            if target_str not in added_nodes:
                net.add_node(target_str, 
                           label=f"{target_str}", 
                           shape="dot", 
                           font={'color': '#000000', 'size': 12},
                           title=f"{target_type}: {target_str}",
                           group=target_type,
                           size=15,
                           mass=1.5)
                added_nodes.add(target_str)

            # Add edge with relationship type and probability as label
            edge_label = f"{relation_type}"
            if probability is not None:
                if probability == 'no_pred':
                    edge_color = '#219ebc'
                    edge_label += ' (P=Not generated)'
                else:
                    edge_label += f" (P={probability:.2f})"
                    edge_color = '#8338ec' if is_ground_truth else '#c1121f'
                # if validated prediction purple, if non-validated prediction red, if no prediction (directly from database) blue
                net.add_edge(source_str, target_str, 
                        label=edge_label, 
                        font={'size': 0},
                        color=edge_color,
                        title=edge_label,
                        length=200,
                        smooth={'type': 'curvedCW', 'roundness': 0.1})
            else:
                net.add_edge(source_str, target_str, 
                        label=edge_label,
                        font={'size': 0},
                        color='#666666',  # Keep default gray for non-GO edges
                        title=edge_label,
                        length=200,
                        smooth={'type': 'curvedCW', 'roundness': 0.1})

    # Save graph to a protein-specific file in a temporary directory
    os.makedirs('temp_viz', exist_ok=True)
    file_path = os.path.join('temp_viz', f'{protein_id}_graph.html')
    net.save_graph(file_path)

    return file_path, visualized_edges