Spaces:
Running
Running
File size: 12,031 Bytes
89677ab e696f95 89677ab e696f95 24c5c6a 301ba09 24c5c6a 301ba09 24c5c6a 301ba09 24c5c6a 301ba09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
import os
with st.spinner("Please wait while we prepare the environment. This may take a few minutes only on the first run..."):
# Run setup script if not already executed
if not os.path.exists(".setup_done"):
os.system("bash setup.sh")
with open(".setup_done", "w") as f:
f.write("done")
import streamlit as st
import streamlit.components.v1 as components
import os
import time
import pandas as pd
from run_prothgt_app import *
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
# Initialize session state variables
if 'predictions_df' not in st.session_state:
st.session_state.predictions_df = None
if 'submitted' not in st.session_state:
st.session_state.submitted = False
with st.sidebar:
st.markdown("""
<style>
.title {
font-size: 35px;
font-weight: bold;
color: #424242;
margin-bottom: 0px;
}
.subtitle {
font-size: 20px;
color: #424242;
margin-bottom: 20px;
line-height: 1.5;
}
.badges {
margin-top: 10px;
margin-bottom: 20px;
}
</style>
<div class="title">ProtHGT</div>
<div class="subtitle">Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Knowledge Graphs and Language Models</div>
<div class="badges">
<a href="">
<img src="https://img.shields.io/badge/DOI-10.1002/pro.4988-b31b1b.svg" alt="publication">
</a>
<a href="https://github.com/HUBioDataLab/ProtHGT">
<img src="https://img.shields.io/badge/GitHub-black?logo=github" alt="github-repository">
</a>
</div>
""", unsafe_allow_html=True)
available_proteins = get_available_proteins()
selected_proteins = []
# Add protein selection methods
selection_method = st.radio(
"Choose input method:",
["Search proteins", "Upload protein ID file"]
)
if selection_method == "Search proteins":
# Add custom CSS to make multiselect scrollable
st.markdown("""
<style>
[data-testid="stMultiSelect"] div:nth-child(2) {
max-height: 200px;
overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)
selected_proteins = st.multiselect(
"Select or search for proteins (UniProt IDs)",
options=available_proteins,
placeholder="Start typing to search...",
max_selections=100
)
if selected_proteins:
st.write(f"Selected {len(selected_proteins)} proteins")
else:
uploaded_file = st.file_uploader(
"Upload a text file with UniProt IDs (one per line, max 100)*",
type=['txt']
)
if uploaded_file:
protein_list = [line.decode('utf-8').strip() for line in uploaded_file]
# Remove empty lines and duplicates
protein_list = list(filter(None, protein_list))
protein_list = list(dict.fromkeys(protein_list))
# filter out proteins that are not in available_proteins
protein_list = [p for p in protein_list if p in available_proteins]
proteins_not_found = [p for p in protein_list if p not in available_proteins]
if len(protein_list) > 100:
st.error("Please upload a file with maximum 100 protein IDs.")
selected_proteins = []
else:
selected_proteins = protein_list
st.write(f"Loaded {len(selected_proteins)} proteins")
if proteins_not_found:
st.error(f"Proteins not found in input knowledge graph: {', '.join(proteins_not_found)}")
st.warning("Currently, our system can generate predictions only for proteins included in our input knowledge graph. Real-time retrieval of relationship data from external source databases is not yet supported. However, we are actively working on integrating this capability in future updates.")
if selected_proteins:
# Option 1: Collapsible expander
with st.expander("View Selected Proteins"):
st.write(f"Total proteins selected: {len(selected_proteins)}")
# Create scrollable container with fixed height
st.markdown(
f"""
<div style="
height: 150px;
overflow-y: scroll;
border: 1px solid #ccc;
border-radius: 4px;
padding: 8px;
background-color: white;">
{'<br>'.join(selected_proteins)}
</div>
""",
unsafe_allow_html=True
)
st.markdown("<div style='padding-top: 10px;'></div>", unsafe_allow_html=True)
# Add download button
proteins_text = '\n'.join(selected_proteins)
st.download_button(
label="Download List",
data=proteins_text,
file_name="selected_proteins.txt",
mime="text/plain",
key="download_button"
)
# Add GO category selection
go_category_options = {
'All Categories': None,
'Molecular Function': 'GO_term_F',
'Biological Process': 'GO_term_P',
'Cellular Component': 'GO_term_C'
}
selected_go_category = st.selectbox(
"Select GO Category for predictions",
options=list(go_category_options.keys()),
help="Choose which GO category to generate predictions for. Selecting 'All Categories' will generate predictions for all three categories."
)
st.warning("⚠️ Due to memory and computational constraints, the maximum number of proteins that can be processed at once is limited to 100 proteins. For larger datasets, please consider running the model locally using our GitHub repository.")
if selected_proteins and selected_go_category:
# Add a button to trigger predictions
if st.button("Generate Predictions"):
st.session_state.submitted = True
if st.session_state.submitted:
with st.spinner("Generating predictions..."):
# Generate predictions only if not already in session state
if st.session_state.predictions_df is None:
# Load model config from JSON file
import json
import os
# Define data directory path
data_dir = "data"
models_dir = os.path.join(data_dir, "models")
# Load model configuration
model_config_paths = {
'GO_term_F': os.path.join(models_dir, "prothgt-config-molecular-function.yaml"),
'GO_term_P': os.path.join(models_dir, "prothgt-config-biological-process.yaml"),
'GO_term_C': os.path.join(models_dir, "prothgt-config-cellular-component.yaml")
}
# Paths for model and data
model_paths = {
'GO_term_F': os.path.join(models_dir, "prothgt-model-molecular-function.pt"),
'GO_term_P': os.path.join(models_dir, "prothgt-model-biological-process.pt"),
'GO_term_C': os.path.join(models_dir, "prothgt-model-cellular-component.pt")
}
# Get the selected GO category
go_category = go_category_options[selected_go_category]
# If a specific category is selected, use that model path
if go_category:
model_config_paths = [model_config_paths[go_category]]
model_paths = [model_paths[go_category]]
go_categories = [go_category]
else:
model_config_paths = [model_config_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']]
model_paths = [model_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']]
go_categories = ['GO_term_F', 'GO_term_P', 'GO_term_C']
# Generate predictions
predictions_df = generate_prediction_df(
protein_ids=selected_proteins,
model_paths=model_paths,
model_config_paths=model_config_paths,
go_category=go_categories
)
st.session_state.predictions_df = predictions_df
# Display and filter predictions
st.success("Predictions generated successfully!")
st.markdown("### Filter and View Predictions")
# Create filters
st.markdown("### Filter Predictions")
col1, col2, col3 = st.columns(3)
with col1:
# Protein filter
selected_protein = st.selectbox(
"Filter by Protein",
options=['All'] + sorted(st.session_state.predictions_df['Protein'].unique().tolist())
)
with col2:
# GO category filter
selected_category = st.selectbox(
"Filter by GO Category",
options=['All'] + sorted(st.session_state.predictions_df['GO_category'].unique().tolist())
)
with col3:
# Probability threshold
min_probability_threshold = st.slider(
"Minimum Probability",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.05
)
max_probability_threshold = st.slider(
"Maximum Probability",
min_value=0.0,
max_value=1.0,
value=1.0,
step=0.05
)
# Filter the dataframe using session state data
filtered_df = st.session_state.predictions_df.copy()
if selected_protein != 'All':
filtered_df = filtered_df[filtered_df['Protein'] == selected_protein]
if selected_category != 'All':
filtered_df = filtered_df[filtered_df['GO_category'] == selected_category]
filtered_df = filtered_df[(filtered_df['Probability'] >= min_probability_threshold) &
(filtered_df['Probability'] <= max_probability_threshold)]
# Sort by probability
filtered_df = filtered_df.sort_values('Probability', ascending=False)
# Display the filtered dataframe
st.dataframe(
filtered_df,
hide_index=True,
column_config={
"Probability": st.column_config.ProgressColumn(
"Probability",
format="%.2f",
min_value=0,
max_value=1,
),
"Protein": st.column_config.TextColumn(
"Protein",
help="UniProt ID",
),
"GO_category": st.column_config.TextColumn(
"GO Category",
help="Gene Ontology Category",
),
"GO_term": st.column_config.TextColumn(
"GO Term",
help="Gene Ontology Term ID",
),
}
)
# Download filtered results
st.download_button(
label="Download Filtered Results",
data=convert_df(filtered_df),
file_name="filtered_predictions.csv",
mime="text/csv",
key="download_filtered_predictions"
)
# Add a reset button in the sidebar
with st.sidebar:
if st.session_state.submitted:
if st.button("Reset"):
st.session_state.predictions_df = None
st.session_state.submitted = False
st.experimental_rerun() |