Spaces:
Running
Running
File size: 21,268 Bytes
89677ab 92ed479 da1c3d0 7419d2a c520c43 3e01b83 c520c43 24c5c6a 301ba09 2f8d670 fb8112c abddf21 301ba09 e021e3c 8b87470 fb8112c ec82ae1 867722f ec82ae1 301ba09 24c5c6a abddf21 301ba09 a38fdcd 301ba09 abddf21 24c5c6a 301ba09 7419d2a e8c701e 7419d2a 25123c8 da1c3d0 abddf21 2643ed2 abddf21 da1c3d0 fcbba9e 95173ca abddf21 fcbba9e da1c3d0 eb75910 301ba09 abddf21 301ba09 2f8d670 abddf21 301ba09 0ab12f7 301ba09 dcd5e55 301ba09 dcd5e55 301ba09 2f8d670 301ba09 8f00c3f 301ba09 8f00c3f 3a2340f 8f00c3f abddf21 301ba09 eb75910 301ba09 abddf21 301ba09 42e2260 301ba09 fb8112c 8b87470 fb8112c 8b87470 fb8112c 2f8d670 301ba09 fb8112c 301ba09 42e2260 8b87470 b2ca546 1e273b2 301ba09 b2ca546 301ba09 9a145bd 301ba09 9a145bd 301ba09 9a145bd 301ba09 7d697ba 301ba09 7d697ba 301ba09 9a145bd 301ba09 7d697ba 9a145bd 301ba09 0ab12f7 301ba09 0ab12f7 301ba09 9a145bd 301ba09 9a145bd 301ba09 9a145bd 301ba09 9a145bd 301ba09 0ab12f7 9a145bd 0ab12f7 9a145bd 0ab12f7 301ba09 2f8d670 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 |
import os
import streamlit as st
from rapidfuzz import process
import random
# with st.spinner("Initializing the environment... This may take up to 10 minutes at the start of each session."):
# # Create a temporary placeholder for the message
# loading_placeholder = st.empty()
# # Show the info message only while the spinner is active
# loading_placeholder.info("""
# **Note:** This initialization is required at the start of each session.
# Once the app is ready, you can run multiple predictions without re-initializing by clicking the **Reset** button in the sidebar.
# """)
# # Run setup script if not already executed
# if not os.path.exists(".setup_done"):
# start_time = time.time()
# os.system("bash setup.sh")
# end_time = time.time()
# print(f"Environment prepared in {end_time - start_time:.2f} seconds")
# with open(".setup_done", "w") as f:
# f.write("done")
# # ❌ Remove the info message after initialization is complete
# loading_placeholder.empty()
from run_prothgt_app import *
def convert_df(df):
return df.to_csv(index=False).encode('utf-8')
# Initialize session state variables
if 'predictions_df' not in st.session_state:
st.session_state.predictions_df = None
if 'submitted' not in st.session_state:
st.session_state.submitted = False
if 'previous_inputs' not in st.session_state:
st.session_state.previous_inputs = None
# Initialize session state variables
if 'generating_predictions' not in st.session_state:
st.session_state.generating_predictions = False
def reset_prediction_state():
st.session_state.generating_predictions = False
st.session_state.submitted = False
st.session_state.predictions_df = None
st.session_state.previous_inputs = None
def set_generating_predictions():
st.session_state.generating_predictions = True
st.session_state.submitted = True
with st.expander("🚀 Upcoming Features"):
st.info("""
We are actively working on enhancing ProtHGT application with new capabilities:
- **Real-time data retrieval for new proteins**: Currently, ProtHGT can only generate predictions for proteins that already exist in our knowledge graph. We are developing a new feature that will allow users to **predict functions for entirely new proteins starting from their sequences**. This will work by **retrieving relevant relationship data in real time from external source databases** (e.g., UniProt, STRING, and other biological repositories). The system will dynamically construct a knowledge graph for the query protein, incorporating its interactions, domains, pathways, and other biological associations before running function prediction. This approach will enable ProtHGT to analyze newly discovered or less-studied proteins even if they are not pre-annotated in our dataset.
- **Expanded embedding options**: Currently, this application represents proteins using **TAPE embeddings**, which serve as the initial numerical representations of protein sequences before being processed in the heterogeneous graph model. We are working on integrating **ProtT5** and **ESM-2** as alternative initial embeddings, allowing users to choose different sequence representations that may enhance performance for specific tasks. A detailed comparison of how these embeddings influence function prediction accuracy will be included in our upcoming publication.
- **Knowledge graph visualization for interpretability**: To improve model explainability, we are developing an interactive **knowledge graph visualization** feature. This will allow users to explore the biological relationships that contributed to ProtHGT’s predictions for a given protein. Users will be able to inspect **protein interactions, GO annotations, domains, pathways, and other key connections** in a structured graphical format, making it easier to interpret and validate predictions.
Stay tuned for updates and future publications!
""")
with st.sidebar:
disabled = st.session_state.generating_predictions
st.markdown("""
<style>
.title {
font-size: 35px;
font-weight: bold;
color: #424242;
margin-bottom: 0px;
}
.subtitle {
font-size: 20px;
color: #424242;
margin-bottom: 20px;
line-height: 1.5;
}
.badges {
margin-top: 10px;
margin-bottom: 20px;
}
</style>
<div class="title">ProtHGT</div>
<div class="subtitle">Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Knowledge Graphs and Language Models</div>
<div class="badges">
<a href="https://github.com/HUBioDataLab/ProtHGT">
<img src="https://img.shields.io/badge/GitHub-black?logo=github" alt="github-repository">
</a>
</div>
""", unsafe_allow_html=True)
available_proteins = get_available_proteins()
if 'example_proteins' not in st.session_state:
st.session_state.example_proteins = random.sample(available_proteins, 5)
selected_proteins = []
# Add protein selection methods
selection_method = st.radio(
"Choose input method:",
["Use example query", "Search proteins", "Upload protein ID file"],
disabled=disabled
)
if selection_method == "Use example query":
selected_proteins = st.session_state.example_proteins
st.write(f"Selected proteins:")
st.markdown(
f"""
<div style="
height: 150px;
overflow-y: scroll;
border: 1px solid #ccc;
border-radius: 4px;
padding: 8px;
margin-bottom: 16px;
background-color: white;">
{'<br>'.join(selected_proteins)}
</div>
""",
unsafe_allow_html=True
)
elif selection_method == "Search proteins":
# User enters search term
search_query = st.text_input(
"1\\. Start typing a protein ID (at least 3 characters) and press Enter to see search results in the dropdown menu below (2)",
"",
disabled=disabled
)
# Apply fuzzy search only if query length is >= 3
filtered_proteins = []
if len(search_query) >= 3:
# Case-insensitive search by converting query and proteins to lowercase
matches = process.extract(
search_query.upper(),
{p: p.upper() for p in available_proteins},
limit=50
)
filtered_proteins = [match[0] for match in matches] # Show top 50 matches
with st.container():
selected_proteins = st.multiselect(
"2\\. Select proteins from search results",
options=filtered_proteins,
placeholder="Start typing a protein ID above (1) to see search results...",
max_selections=100,
disabled=disabled,
key="protein_selector"
)
# Apply custom CSS to make container scrollable
st.markdown("""
<style>
div[data-testid="stMultiSelect"] div:nth-child(2) {
max-height: 250px;
overflow-y: auto;
}
</style>
""", unsafe_allow_html=True)
else: # Upload file option
uploaded_file = st.file_uploader(
"Upload a text file with UniProt IDs (one per line, max 100)*",
type=['txt'],
disabled=disabled
)
if uploaded_file:
protein_list = [line.strip() for line in uploaded_file.read().decode('utf-8').splitlines()]
# Remove empty lines and duplicates
protein_list = list(filter(None, protein_list))
protein_list = list(dict.fromkeys(protein_list))
# Check for proteins not in available_proteins
proteins_not_found = [p for p in protein_list if p not in available_proteins]
# Filter to keep only available proteins
protein_list = [p for p in protein_list if p in available_proteins]
if len(protein_list) > 100:
st.error("Please upload a file with maximum 100 protein IDs.")
selected_proteins = []
else:
selected_proteins = protein_list
st.write(f"Loaded {len(selected_proteins)} proteins")
if proteins_not_found:
st.warning(f"""
The following proteins were not found in our input knowledge graph and have been discarded:
""")
with st.expander("View Discarded Proteins"):
# Create scrollable container with fixed height
st.markdown(
f"""
<div style="
height: 150px;
overflow-y: scroll;
border: 1px solid #ccc;
border-radius: 4px;
padding: 8px;
margin-bottom: 16px;
background-color: white;">
{'<br>'.join(proteins_not_found)}
</div>
""",
unsafe_allow_html=True
)
st.warning(f"""
Currently, our system can only generate predictions for proteins that are already included in our knowledge graph. **Real-time retrieval of relationship data from external source databases is not yet supported.**
We are actively working on integrating this capability in future updates. Stay tuned!
""")
if selected_proteins:
st.write(f"Total proteins selected: {len(selected_proteins)}")
# Add download button
proteins_text = '\n'.join(selected_proteins)
st.download_button(
label="Download Selected Proteins List",
data=proteins_text,
file_name="selected_proteins.txt",
mime="text/plain",
key="download_selected_proteins"
)
# Add GO category selection
go_category_options = {
'All Categories': None,
'Molecular Function': 'GO_term_F',
'Biological Process': 'GO_term_P',
'Cellular Component': 'GO_term_C'
}
selected_go_category = st.selectbox(
"Select GO Category for predictions",
options=list(go_category_options.keys()),
help="Choose which GO category to generate predictions for. Selecting 'All Categories' will generate predictions for all three categories.",
disabled=disabled
)
st.warning("⚠️ Due to memory and computational constraints, the maximum number of proteins that can be processed at once is limited to 100 proteins. For larger datasets, please consider running the model locally using our [GitHub repository](https://github.com/HUBioDataLab/ProtHGT).")
if selected_proteins and selected_go_category:
button_disabled = st.session_state.submitted
if st.button("Generate Predictions",
disabled=button_disabled,
key="generate_predictions",
on_click=set_generating_predictions):
pass
# Create a tuple of current inputs to track changes
current_inputs = (tuple(selected_proteins), selected_go_category)
# Check if inputs have changed
if st.session_state.previous_inputs != current_inputs:
st.session_state.predictions_df = None
st.session_state.submitted = False
st.session_state.previous_inputs = current_inputs
if st.session_state.submitted:
with st.spinner("Generating predictions..."):
# Generate predictions only if not already in session state
if st.session_state.predictions_df is None:
# Load model config from JSON file
import json
import os
# Define data directory path
data_dir = "data"
models_dir = os.path.join(data_dir, "models")
# Load model configuration
model_config_paths = {
'GO_term_F': os.path.join(models_dir, "prothgt-config-molecular-function.yaml"),
'GO_term_P': os.path.join(models_dir, "prothgt-config-biological-process.yaml"),
'GO_term_C': os.path.join(models_dir, "prothgt-config-cellular-component.yaml")
}
# Paths for model and data
model_paths = {
'GO_term_F': os.path.join(models_dir, "prothgt-model-molecular-function.pt"),
'GO_term_P': os.path.join(models_dir, "prothgt-model-biological-process.pt"),
'GO_term_C': os.path.join(models_dir, "prothgt-model-cellular-component.pt")
}
# Get the selected GO category
go_category = go_category_options[selected_go_category]
# If a specific category is selected, use that model path
if go_category:
model_config_paths = [model_config_paths[go_category]]
model_paths = [model_paths[go_category]]
go_categories = [go_category]
else:
model_config_paths = [model_config_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']]
model_paths = [model_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']]
go_categories = ['GO_term_F', 'GO_term_P', 'GO_term_C']
# Generate predictions
predictions_df = generate_prediction_df(
protein_ids=selected_proteins,
model_paths=model_paths,
model_config_paths=model_config_paths,
go_category=go_categories
)
st.session_state.predictions_df = predictions_df
# Reset only the generating_predictions flag to release the sidebar
st.session_state.generating_predictions = False
st.rerun()
# Display and filter predictions
st.success("Predictions generated successfully!")
st.markdown("### Filter and View Predictions")
# Create filters
col1, col2, col3, col4 = st.columns(4)
with col1:
# Extract UniProt IDs from URLs for the selectbox
uniprot_ids = st.session_state.predictions_df['UniProt_ID'].apply(
lambda x: x.split('/')[-2] # Gets the ID part from the URL
).unique().tolist()
# Protein filter
selected_protein = st.selectbox(
"Filter by Protein",
options=['All'] + sorted(uniprot_ids)
)
with col2:
# GO category filter
selected_category = st.selectbox(
"Filter by GO Category",
options=['All'] + sorted(st.session_state.predictions_df['GO_category'].unique().tolist())
)
with col3:
# GO term filter
go_term_filter = st.text_input(
"Filter by GO Term ID",
placeholder="e.g., GO:0003674",
help="Enter a GO term ID to filter results"
).strip()
with col4:
# Probability threshold
min_probability_threshold = st.slider(
"Minimum Probability",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.05
)
max_probability_threshold = st.slider(
"Maximum Probability",
min_value=0.0,
max_value=1.0,
value=1.0,
step=0.05
)
# Filter the dataframe using session state data
filtered_df = st.session_state.predictions_df.copy()
if selected_protein != 'All':
filtered_df = filtered_df[filtered_df['UniProt_ID'].str.contains(selected_protein)]
if selected_category != 'All':
filtered_df = filtered_df[filtered_df['GO_category'] == selected_category]
if go_term_filter:
filtered_df = filtered_df[filtered_df['GO_ID'].str.contains(go_term_filter, case=False, na=False)]
filtered_df = filtered_df[(filtered_df['Probability'] >= min_probability_threshold) &
(filtered_df['Probability'] <= max_probability_threshold)]
# Custom CSS to increase table width and improve layout
st.markdown("""
<style>
.stDataFrame {
width: 100%;
}
.stDataFrame > div {
width: 100%;
}
.stDataFrame [data-testid="stDataFrameResizable"] {
width: 100%;
min-width: 100%;
}
.pagination-info {
font-size: 14px;
color: #666;
padding: 10px 0;
}
.page-controls {
display: flex;
align-items: center;
justify-content: center;
gap: 20px;
padding: 10px 0;
}
</style>
""", unsafe_allow_html=True)
# Add pagination controls
col1, col2, col3 = st.columns([2, 1, 2])
with col2:
rows_per_page = st.selectbox("Rows per page", [50, 100, 200, 500], index=1)
total_rows = len(filtered_df)
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Initialize page number in session state
if "page_number" not in st.session_state:
st.session_state.page_number = 0
# Calculate start and end indices for current page
start_idx = st.session_state.page_number * rows_per_page
end_idx = min(start_idx + rows_per_page, total_rows)
st.dataframe(
filtered_df.iloc[start_idx:end_idx],
hide_index=True,
use_container_width=True,
column_config={
"UniProt_ID": st.column_config.LinkColumn(
"UniProt ID",
help="Click to view protein in UniProt",
validate="^https://www\\.uniprot\\.org/uniprotkb/[A-Z0-9]+/entry$",
display_text="^https://www\\.uniprot\\.org/uniprotkb/([A-Z0-9]+)/entry$"
),
"GO_ID": st.column_config.LinkColumn(
"GO ID",
help="Click to view GO term in QuickGO",
validate="^https://www\\.ebi\\.ac\\.uk/QuickGO/term/GO:[0-9]+$",
display_text="^https://www\\.ebi\\.ac\\.uk/QuickGO/term/(GO:[0-9]+)$"
),
"Probability": st.column_config.ProgressColumn(
"Probability",
format="%.2f",
min_value=0,
max_value=1,
),
"Protein": st.column_config.TextColumn(
"Protein",
help="Protein Name",
),
"GO_category": st.column_config.TextColumn(
"GO Category",
help="Gene Ontology Category",
),
"GO_term": st.column_config.TextColumn(
"GO Term",
help="Gene Ontology Term Name",
),
}
)
# Pagination controls with better layout
col1, col2, col3 = st.columns([1, 3, 1])
with col1:
if st.button("Previous", disabled=st.session_state.page_number == 0):
st.session_state.page_number -= 1
st.rerun()
with col2:
st.markdown(f"""
<div class="pagination-info" style="text-align: center">
Page {st.session_state.page_number + 1} of {total_pages}<br>
Showing rows {start_idx + 1} to {end_idx} of {total_rows}
</div>
""", unsafe_allow_html=True)
with col3:
if st.button("Next", disabled=st.session_state.page_number >= total_pages - 1):
st.session_state.page_number += 1
st.rerun()
# Download filtered results
st.download_button(
label="Download Filtered Results",
data=convert_df(filtered_df),
file_name="filtered_predictions.csv",
mime="text/csv",
key="download_filtered_predictions"
) |