Spaces:
Sleeping
Sleeping
import os | |
# Run setup script if not already executed | |
if not os.path.exists(".setup_done"): | |
os.system("bash setup.sh") | |
with open(".setup_done", "w") as f: | |
f.write("done") | |
import streamlit as st | |
import streamlit.components.v1 as components | |
import os | |
import time | |
import pandas as pd | |
from run_prothgt_app import * | |
def convert_df(df): | |
return df.to_csv(index=False).encode('utf-8') | |
# Initialize session state variables | |
if 'predictions_df' not in st.session_state: | |
st.session_state.predictions_df = None | |
if 'submitted' not in st.session_state: | |
st.session_state.submitted = False | |
with st.sidebar: | |
st.markdown(""" | |
<style> | |
.title { | |
font-size: 35px; | |
font-weight: bold; | |
color: #424242; | |
margin-bottom: 0px; | |
} | |
.subtitle { | |
font-size: 20px; | |
color: #424242; | |
margin-bottom: 20px; | |
line-height: 1.5; | |
} | |
.badges { | |
margin-top: 10px; | |
margin-bottom: 20px; | |
} | |
</style> | |
<div class="title">ProtHGT</div> | |
<div class="subtitle">Heterogeneous Graph Transformers for Automated Protein Function Prediction Using Knowledge Graphs and Language Models</div> | |
<div class="badges"> | |
<a href=""> | |
<img src="https://img.shields.io/badge/DOI-10.1002/pro.4988-b31b1b.svg" alt="publication"> | |
</a> | |
<a href="https://github.com/HUBioDataLab/ProtHGT"> | |
<img src="https://img.shields.io/badge/GitHub-black?logo=github" alt="github-repository"> | |
</a> | |
</div> | |
""", unsafe_allow_html=True) | |
available_proteins = get_available_proteins() | |
selected_proteins = [] | |
# Add protein selection methods | |
selection_method = st.radio( | |
"Choose input method:", | |
["Search proteins", "Upload protein ID file"] | |
) | |
if selection_method == "Search proteins": | |
# Add custom CSS to make multiselect scrollable | |
st.markdown(""" | |
<style> | |
[data-testid="stMultiSelect"] div:nth-child(2) { | |
max-height: 200px; | |
overflow-y: auto; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
selected_proteins = st.multiselect( | |
"Select or search for proteins (UniProt IDs)", | |
options=available_proteins, | |
placeholder="Start typing to search...", | |
max_selections=100 | |
) | |
if selected_proteins: | |
st.write(f"Selected {len(selected_proteins)} proteins") | |
else: | |
uploaded_file = st.file_uploader( | |
"Upload a text file with UniProt IDs (one per line, max 100)*", | |
type=['txt'] | |
) | |
if uploaded_file: | |
protein_list = [line.decode('utf-8').strip() for line in uploaded_file] | |
# Remove empty lines and duplicates | |
protein_list = list(filter(None, protein_list)) | |
protein_list = list(dict.fromkeys(protein_list)) | |
# filter out proteins that are not in available_proteins | |
protein_list = [p for p in protein_list if p in available_proteins] | |
proteins_not_found = [p for p in protein_list if p not in available_proteins] | |
if len(protein_list) > 100: | |
st.error("Please upload a file with maximum 100 protein IDs.") | |
selected_proteins = [] | |
else: | |
selected_proteins = protein_list | |
st.write(f"Loaded {len(selected_proteins)} proteins") | |
if proteins_not_found: | |
st.error(f"Proteins not found in input knowledge graph: {', '.join(proteins_not_found)}") | |
st.warning("Currently, our system can generate predictions only for proteins included in our input knowledge graph. Real-time retrieval of relationship data from external source databases is not yet supported. However, we are actively working on integrating this capability in future updates.") | |
if selected_proteins: | |
# Option 1: Collapsible expander | |
with st.expander("View Selected Proteins"): | |
st.write(f"Total proteins selected: {len(selected_proteins)}") | |
# Create scrollable container with fixed height | |
st.markdown( | |
f""" | |
<div style=" | |
height: 150px; | |
overflow-y: scroll; | |
border: 1px solid #ccc; | |
border-radius: 4px; | |
padding: 8px; | |
background-color: white;"> | |
{'<br>'.join(selected_proteins)} | |
</div> | |
""", | |
unsafe_allow_html=True | |
) | |
st.markdown("<div style='padding-top: 10px;'></div>", unsafe_allow_html=True) | |
# Add download button | |
proteins_text = '\n'.join(selected_proteins) | |
st.download_button( | |
label="Download List", | |
data=proteins_text, | |
file_name="selected_proteins.txt", | |
mime="text/plain", | |
key="download_button" | |
) | |
# Add GO category selection | |
go_category_options = { | |
'All Categories': None, | |
'Molecular Function': 'GO_term_F', | |
'Biological Process': 'GO_term_P', | |
'Cellular Component': 'GO_term_C' | |
} | |
selected_go_category = st.selectbox( | |
"Select GO Category for predictions", | |
options=list(go_category_options.keys()), | |
help="Choose which GO category to generate predictions for. Selecting 'All Categories' will generate predictions for all three categories." | |
) | |
st.warning("⚠️ Due to memory and computational constraints, the maximum number of proteins that can be processed at once is limited to 100 proteins. For larger datasets, please consider running the model locally using our GitHub repository.") | |
if selected_proteins and selected_go_category: | |
# Add a button to trigger predictions | |
if st.button("Generate Predictions"): | |
st.session_state.submitted = True | |
if st.session_state.submitted: | |
with st.spinner("Generating predictions..."): | |
# Generate predictions only if not already in session state | |
if st.session_state.predictions_df is None: | |
# Load model config from JSON file | |
import json | |
import os | |
# Define data directory path | |
data_dir = "data" | |
models_dir = os.path.join(data_dir, "models") | |
# Load model configuration | |
model_config_paths = { | |
'GO_term_F': os.path.join(models_dir, "prothgt-config-molecular-function.yaml"), | |
'GO_term_P': os.path.join(models_dir, "prothgt-config-biological-process.yaml"), | |
'GO_term_C': os.path.join(models_dir, "prothgt-config-cellular-component.yaml") | |
} | |
# Paths for model and data | |
model_paths = { | |
'GO_term_F': os.path.join(models_dir, "prothgt-model-molecular-function.pt"), | |
'GO_term_P': os.path.join(models_dir, "prothgt-model-biological-process.pt"), | |
'GO_term_C': os.path.join(models_dir, "prothgt-model-cellular-component.pt") | |
} | |
# Get the selected GO category | |
go_category = go_category_options[selected_go_category] | |
# If a specific category is selected, use that model path | |
if go_category: | |
model_config_paths = [model_config_paths[go_category]] | |
model_paths = [model_paths[go_category]] | |
go_categories = [go_category] | |
else: | |
model_config_paths = [model_config_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']] | |
model_paths = [model_paths[cat] for cat in ['GO_term_F', 'GO_term_P', 'GO_term_C']] | |
go_categories = ['GO_term_F', 'GO_term_P', 'GO_term_C'] | |
# Generate predictions | |
predictions_df = generate_prediction_df( | |
protein_ids=selected_proteins, | |
model_paths=model_paths, | |
model_config_paths=model_config_paths, | |
go_category=go_categories | |
) | |
st.session_state.predictions_df = predictions_df | |
# Display and filter predictions | |
st.success("Predictions generated successfully!") | |
st.markdown("### Filter and View Predictions") | |
# Create filters | |
st.markdown("### Filter Predictions") | |
col1, col2, col3 = st.columns(3) | |
with col1: | |
# Protein filter | |
selected_protein = st.selectbox( | |
"Filter by Protein", | |
options=['All'] + sorted(st.session_state.predictions_df['Protein'].unique().tolist()) | |
) | |
with col2: | |
# GO category filter | |
selected_category = st.selectbox( | |
"Filter by GO Category", | |
options=['All'] + sorted(st.session_state.predictions_df['GO_category'].unique().tolist()) | |
) | |
with col3: | |
# Probability threshold | |
min_probability_threshold = st.slider( | |
"Minimum Probability", | |
min_value=0.0, | |
max_value=1.0, | |
value=0.5, | |
step=0.05 | |
) | |
max_probability_threshold = st.slider( | |
"Maximum Probability", | |
min_value=0.0, | |
max_value=1.0, | |
value=1.0, | |
step=0.05 | |
) | |
# Filter the dataframe using session state data | |
filtered_df = st.session_state.predictions_df.copy() | |
if selected_protein != 'All': | |
filtered_df = filtered_df[filtered_df['Protein'] == selected_protein] | |
if selected_category != 'All': | |
filtered_df = filtered_df[filtered_df['GO_category'] == selected_category] | |
filtered_df = filtered_df[(filtered_df['Probability'] >= min_probability_threshold) & | |
(filtered_df['Probability'] <= max_probability_threshold)] | |
# Sort by probability | |
filtered_df = filtered_df.sort_values('Probability', ascending=False) | |
# Display the filtered dataframe | |
st.dataframe( | |
filtered_df, | |
hide_index=True, | |
column_config={ | |
"Probability": st.column_config.ProgressColumn( | |
"Probability", | |
format="%.2f", | |
min_value=0, | |
max_value=1, | |
), | |
"Protein": st.column_config.TextColumn( | |
"Protein", | |
help="UniProt ID", | |
), | |
"GO_category": st.column_config.TextColumn( | |
"GO Category", | |
help="Gene Ontology Category", | |
), | |
"GO_term": st.column_config.TextColumn( | |
"GO Term", | |
help="Gene Ontology Term ID", | |
), | |
} | |
) | |
# Download filtered results | |
st.download_button( | |
label="Download Filtered Results", | |
data=convert_df(filtered_df), | |
file_name="filtered_predictions.csv", | |
mime="text/csv", | |
key="download_filtered_predictions" | |
) | |
# Add a reset button in the sidebar | |
with st.sidebar: | |
if st.session_state.submitted: | |
if st.button("Reset"): | |
st.session_state.predictions_df = None | |
st.session_state.submitted = False | |
st.experimental_rerun() |