Spaces:
Sleeping
Sleeping
Erva Ulusoy
commited on
Commit
Β·
6dd3e8c
1
Parent(s):
6248f35
added User Guide page
Browse files- pages/User_Guide.py +65 -0
pages/User_Guide.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.sidebar.markdown('''
|
4 |
+
# Sections
|
5 |
+
- [How to use](#how-to-use)
|
6 |
+
''', unsafe_allow_html=True)
|
7 |
+
|
8 |
+
st.markdown('''
|
9 |
+
# ProtHGT User Guide
|
10 |
+
''')
|
11 |
+
|
12 |
+
import streamlit as st
|
13 |
+
|
14 |
+
st.markdown("""
|
15 |
+
ProtHGT is a web-based tool for **automated protein function prediction** using heterogeneous graph transformers and knowledge graphs. Follow the steps below to generate predictions for your proteins.
|
16 |
+
""")
|
17 |
+
|
18 |
+
st.subheader("1. Select Proteins")
|
19 |
+
st.markdown("""
|
20 |
+
In the **sidebar**, choose how to input your proteins:
|
21 |
+
- **Search Proteins**: Select or search UniProt IDs from the available dataset.
|
22 |
+
- **Upload a File**: Upload a text file (.txt) containing UniProt IDs (one per line, max 100).
|
23 |
+
""")
|
24 |
+
st.warning("β οΈ Only proteins included in our input knowledge graph can be processed. If your protein is missing, real-time retrieval from external sources is not yet supported.")
|
25 |
+
st.info("π₯ Selected proteins can be downloaded as a txt file.")
|
26 |
+
|
27 |
+
|
28 |
+
st.subheader("2. Choose Gene Ontology (GO) Category")
|
29 |
+
st.markdown("""
|
30 |
+
Select which **Gene Ontology (GO) sub-ontology** to use for function prediction:
|
31 |
+
- **Molecular Function (MF)** β Biochemical activity of the protein
|
32 |
+
- **Biological Process (BP)** β Biological roles and pathways
|
33 |
+
- **Cellular Component (CC)** β Location within the cell
|
34 |
+
- **All Categories** β Runs predictions for all three categories
|
35 |
+
""")
|
36 |
+
|
37 |
+
st.subheader("3. Generate Predictions")
|
38 |
+
st.markdown("""
|
39 |
+
Click **"Generate Predictions"** to start the analysis. The model will process the selected proteins and return predicted functional annotations.
|
40 |
+
|
41 |
+
π **Processing time**: A few minutes (depending on input size).
|
42 |
+
""")
|
43 |
+
|
44 |
+
st.subheader("4. View and Filter Results")
|
45 |
+
st.markdown("""
|
46 |
+
Once predictions are generated, use the filter options to refine the output:
|
47 |
+
- **Filter by Protein** (UniProt ID)
|
48 |
+
- **Filter by GO Category**
|
49 |
+
- **Set Probability Range** (Adjust prediction confidence thresholds)
|
50 |
+
|
51 |
+
Results are displayed in a sortable table, with **probabilities** indicating prediction confidence.
|
52 |
+
""")
|
53 |
+
|
54 |
+
st.info("π₯ Filtered predictions can be downloaded as a CSV file.")
|
55 |
+
|
56 |
+
st.subheader("5. Reset and Start Over")
|
57 |
+
st.markdown("""
|
58 |
+
To reset your selections and run new predictions, click **"Reset"** in the sidebar.
|
59 |
+
""")
|
60 |
+
|
61 |
+
st.subheader("π Running Locally?")
|
62 |
+
st.markdown("""
|
63 |
+
For **larger datasets** or **custom analyses**, you can run ProtHGT locally using our **GitHub repository**:
|
64 |
+
[π ProtHGT GitHub](https://github.com/HUBioDataLab/ProtHGT)
|
65 |
+
""")
|