Hackoor commited on
Commit
657964c
Β·
1 Parent(s): 4c82c04

Delete app1.py

Browse files
Files changed (1) hide show
  1. app1.py +0 -126
app1.py DELETED
@@ -1,126 +0,0 @@
1
- import streamlit as st
2
- from streamlit_chat import message
3
- from langchain.chains import ConversationalRetrievalChain
4
- from langchain.embeddings import HuggingFaceEmbeddings
5
- from langchain.llms import CTransformers
6
- from langchain.llms import Replicate
7
- from langchain.text_splitter import CharacterTextSplitter
8
- from langchain.vectorstores import FAISS
9
- from langchain.memory import ConversationBufferMemory
10
- from langchain.document_loaders import PyPDFLoader
11
- from langchain.document_loaders import TextLoader
12
- from langchain.document_loaders import Docx2txtLoader
13
- from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
14
- import os
15
- from dotenv import load_dotenv
16
- import tempfile
17
-
18
-
19
- load_dotenv()
20
-
21
-
22
- def initialize_session_state():
23
- if 'history' not in st.session_state:
24
- st.session_state['history'] = []
25
-
26
- if 'generated' not in st.session_state:
27
- st.session_state['generated'] = ["Hello! Ask me anything about πŸ€—"]
28
-
29
- if 'past' not in st.session_state:
30
- st.session_state['past'] = ["Hey! πŸ‘‹"]
31
-
32
- def conversation_chat(query, chain, history):
33
- result = chain({"question": query, "chat_history": history})
34
- history.append((query, result["answer"]))
35
- return result["answer"]
36
-
37
- def display_chat_history(chain):
38
- reply_container = st.container()
39
- container = st.container()
40
-
41
- with container:
42
- with st.form(key='my_form', clear_on_submit=True):
43
- user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input')
44
- submit_button = st.form_submit_button(label='Send')
45
-
46
- if submit_button and user_input:
47
- with st.spinner('Generating response...'):
48
- output = conversation_chat(user_input, chain, st.session_state['history'])
49
-
50
- st.session_state['past'].append(user_input)
51
- st.session_state['generated'].append(output)
52
-
53
- if st.session_state['generated']:
54
- with reply_container:
55
- for i in range(len(st.session_state['generated'])):
56
- message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
57
- message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
58
-
59
- def create_conversational_chain(vector_store):
60
- load_dotenv()
61
- # Create llm
62
- #llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",
63
- #streaming=True,
64
- #callbacks=[StreamingStdOutCallbackHandler()],
65
- #model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01})
66
- llm = Replicate(
67
- streaming = True,
68
- model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
69
- callbacks=[StreamingStdOutCallbackHandler()],
70
- input = {"temperature": 0.01, "max_length" :500,"top_p":1})
71
- memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
72
-
73
- chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
74
- retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
75
- memory=memory)
76
- return chain
77
-
78
- def main():
79
- load_dotenv()
80
- # Initialize session state
81
- initialize_session_state()
82
- st.title("Multi-Docs ChatBot using llama-2-70b :books:")
83
- # Initialize Streamlit
84
- st.sidebar.title("Document Processing")
85
- uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
86
-
87
-
88
- if uploaded_files:
89
- text = []
90
- for file in uploaded_files:
91
- file_extension = os.path.splitext(file.name)[1]
92
- with tempfile.NamedTemporaryFile(delete=False) as temp_file:
93
- temp_file.write(file.read())
94
- temp_file_path = temp_file.name
95
-
96
- loader = None
97
- if file_extension == ".pdf":
98
- loader = PyPDFLoader(temp_file_path)
99
- elif file_extension == ".docx" or file_extension == ".doc":
100
- loader = Docx2txtLoader(temp_file_path)
101
- elif file_extension == ".txt":
102
- loader = TextLoader(temp_file_path)
103
-
104
- if loader:
105
- text.extend(loader.load())
106
- os.remove(temp_file_path)
107
-
108
- text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
109
- text_chunks = text_splitter.split_documents(text)
110
-
111
- # Create embeddings
112
- embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
113
- model_kwargs={'device': 'cpu'})
114
-
115
- # Create vector store
116
- vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
117
-
118
- # Create the chain object
119
- chain = create_conversational_chain(vector_store)
120
-
121
-
122
- display_chat_history(chain)
123
-
124
- if __name__ == "__main__":
125
- main()
126
-