Hackoor commited on
Commit
bb1c5bd
Β·
1 Parent(s): fff97cf

Update app1.py

Browse files
Files changed (1) hide show
  1. app1.py +126 -0
app1.py CHANGED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit_chat import message
3
+ from langchain.chains import ConversationalRetrievalChain
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
+ from langchain.llms import CTransformers
6
+ from langchain.llms import Replicate
7
+ from langchain.text_splitter import CharacterTextSplitter
8
+ from langchain.vectorstores import FAISS
9
+ from langchain.memory import ConversationBufferMemory
10
+ from langchain.document_loaders import PyPDFLoader
11
+ from langchain.document_loaders import TextLoader
12
+ from langchain.document_loaders import Docx2txtLoader
13
+ from langchain.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
14
+ import os
15
+ from dotenv import load_dotenv
16
+ import tempfile
17
+
18
+
19
+ load_dotenv()
20
+
21
+
22
+ def initialize_session_state():
23
+ if 'history' not in st.session_state:
24
+ st.session_state['history'] = []
25
+
26
+ if 'generated' not in st.session_state:
27
+ st.session_state['generated'] = ["Hello! Ask me anything about πŸ€—"]
28
+
29
+ if 'past' not in st.session_state:
30
+ st.session_state['past'] = ["Hey! πŸ‘‹"]
31
+
32
+ def conversation_chat(query, chain, history):
33
+ result = chain({"question": query, "chat_history": history})
34
+ history.append((query, result["answer"]))
35
+ return result["answer"]
36
+
37
+ def display_chat_history(chain):
38
+ reply_container = st.container()
39
+ container = st.container()
40
+
41
+ with container:
42
+ with st.form(key='my_form', clear_on_submit=True):
43
+ user_input = st.text_input("Question:", placeholder="Ask about your Documents", key='input')
44
+ submit_button = st.form_submit_button(label='Send')
45
+
46
+ if submit_button and user_input:
47
+ with st.spinner('Generating response...'):
48
+ output = conversation_chat(user_input, chain, st.session_state['history'])
49
+
50
+ st.session_state['past'].append(user_input)
51
+ st.session_state['generated'].append(output)
52
+
53
+ if st.session_state['generated']:
54
+ with reply_container:
55
+ for i in range(len(st.session_state['generated'])):
56
+ message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="thumbs")
57
+ message(st.session_state["generated"][i], key=str(i), avatar_style="fun-emoji")
58
+
59
+ def create_conversational_chain(vector_store):
60
+ load_dotenv()
61
+ # Create llm
62
+ #llm = CTransformers(model="llama-2-7b-chat.ggmlv3.q4_0.bin",
63
+ #streaming=True,
64
+ #callbacks=[StreamingStdOutCallbackHandler()],
65
+ #model_type="llama", config={'max_new_tokens': 500, 'temperature': 0.01})
66
+ llm = Replicate(
67
+ streaming = True,
68
+ model = "replicate/llama-2-70b-chat:58d078176e02c219e11eb4da5a02a7830a283b14cf8f94537af893ccff5ee781",
69
+ callbacks=[StreamingStdOutCallbackHandler()],
70
+ input = {"temperature": 0.01, "max_length" :500,"top_p":1})
71
+ memory = ConversationBufferMemory(memory_key="chat_history", return_messages=True)
72
+
73
+ chain = ConversationalRetrievalChain.from_llm(llm=llm, chain_type='stuff',
74
+ retriever=vector_store.as_retriever(search_kwargs={"k": 2}),
75
+ memory=memory)
76
+ return chain
77
+
78
+ def main():
79
+ load_dotenv()
80
+ # Initialize session state
81
+ initialize_session_state()
82
+ st.title("Multi-Docs ChatBot using llama-2-70b :books:")
83
+ # Initialize Streamlit
84
+ st.sidebar.title("Document Processing")
85
+ uploaded_files = st.sidebar.file_uploader("Upload files", accept_multiple_files=True)
86
+
87
+
88
+ if uploaded_files:
89
+ text = []
90
+ for file in uploaded_files:
91
+ file_extension = os.path.splitext(file.name)[1]
92
+ with tempfile.NamedTemporaryFile(delete=False) as temp_file:
93
+ temp_file.write(file.read())
94
+ temp_file_path = temp_file.name
95
+
96
+ loader = None
97
+ if file_extension == ".pdf":
98
+ loader = PyPDFLoader(temp_file_path)
99
+ elif file_extension == ".docx" or file_extension == ".doc":
100
+ loader = Docx2txtLoader(temp_file_path)
101
+ elif file_extension == ".txt":
102
+ loader = TextLoader(temp_file_path)
103
+
104
+ if loader:
105
+ text.extend(loader.load())
106
+ os.remove(temp_file_path)
107
+
108
+ text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, chunk_overlap=100, length_function=len)
109
+ text_chunks = text_splitter.split_documents(text)
110
+
111
+ # Create embeddings
112
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2",
113
+ model_kwargs={'device': 'cpu'})
114
+
115
+ # Create vector store
116
+ vector_store = FAISS.from_documents(text_chunks, embedding=embeddings)
117
+
118
+ # Create the chain object
119
+ chain = create_conversational_chain(vector_store)
120
+
121
+
122
+ display_chat_history(chain)
123
+
124
+ if __name__ == "__main__":
125
+ main()
126
+