Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
|
4 |
+
def main():
|
5 |
+
st.title("Chatbot with Hugging Face Model")
|
6 |
+
|
7 |
+
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
|
10 |
+
|
11 |
+
user_input = st.text_input("User Input:", "What is your favourite condiment?")
|
12 |
+
|
13 |
+
if st.button("Generate Response"):
|
14 |
+
messages = [
|
15 |
+
{"role": "user", "content": user_input},
|
16 |
+
{"role": "assistant", "content": "Placeholder assistant message"} # You can modify this as needed
|
17 |
+
]
|
18 |
+
|
19 |
+
inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
20 |
+
|
21 |
+
outputs = model.generate(inputs, max_new_tokens=20)
|
22 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
23 |
+
|
24 |
+
st.text_area("Assistant's Response:", response)
|
25 |
+
|
26 |
+
if __name__ == "__main__":
|
27 |
+
main()
|