HaiderSultanArc's picture
AI Engine API
ba600a6
import datetime
import time
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import torch
def getDevice():
if torch.cuda.is_available():
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
return device
def flatAccuracy(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat) / len(labels_flat)
def formatTime(elapsed):
elapsed_rounded = int(round((elapsed)))
# Format as hh:mm:ss
return str(datetime.timedelta(seconds=elapsed_rounded))
def plotTrainingLoss(lossValues):
sns.set(style='darkgrid')
sns.set(font_scale=1.5)
plt.rcParams["figure.figsize"] = (12,6)
plt.plot(lossValues, 'b-o')
plt.title("Training loss")
plt.xlabel("Epoch")
plt.ylabel("Loss")
plt.show()