HAITAME LAFRAME commited on
Commit
a68cebc
·
verified ·
1 Parent(s): 9542b65

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +95 -53
app.py CHANGED
@@ -1,63 +1,105 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HaitameLaf/Phi3-Game16bit")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
 
 
 
 
 
 
 
 
 
 
 
38
 
39
- response += token
40
- yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
  demo = gr.ChatInterface(
46
- respond,
 
 
 
 
 
47
  additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
  gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
 
 
 
 
 
57
  ),
58
  ],
 
 
 
59
  )
60
-
61
-
62
- if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
+ import torch
3
+ from transformers import (
4
+ AutoModelForCausalLM,
5
+ AutoTokenizer,
6
+ TextIteratorStreamer,
7
+ )
8
+ import os
9
+ from threading import Thread
10
+ import spaces
11
+ import time
12
+ import subprocess
13
+
14
+ subprocess.run(
15
+ "pip install flash-attn --no-build-isolation",
16
+ env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
17
+ shell=True,
18
+ )
19
+
20
+ token = os.environ["HF_TOKEN"]
21
+
22
+
23
+ model = AutoModelForCausalLM.from_pretrained(
24
+ "HaitameLaf/Phi3-Game16bit",
25
+ token=token,
26
+ trust_remote_code=True,
27
+ )
28
+ tok = AutoTokenizer.from_pretrained("HaitameLaf/Phi3-Game16bit", token=token)
29
+ terminators = [
30
+ tok.eos_token_id,
31
+ ]
32
+
33
+ if torch.cuda.is_available():
34
+ device = torch.device("cuda")
35
+ print(f"Using GPU: {torch.cuda.get_device_name(device)}")
36
+ else:
37
+ device = torch.device("cpu")
38
+ print("Using CPU")
39
+
40
+ model = model.to(device)
41
+ # Dispatch Errors
42
+
43
+
44
+ @spaces.GPU(duration=60)
45
+ def chat(message, history, temperature, do_sample, max_tokens):
46
+ chat = []
47
+ for item in history:
48
+ chat.append({"role": "user", "content": item[0]})
49
+ if item[1] is not None:
50
+ chat.append({"role": "assistant", "content": item[1]})
51
+ chat.append({"role": "user", "content": message})
52
+ messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
53
+ model_inputs = tok([messages], return_tensors="pt").to(device)
54
+ streamer = TextIteratorStreamer(
55
+ tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
56
+ )
57
+ generate_kwargs = dict(
58
+ model_inputs,
59
+ streamer=streamer,
60
+ max_new_tokens=max_tokens,
61
+ do_sample=True,
62
  temperature=temperature,
63
+ eos_token_id=terminators,
64
+ )
65
+
66
+ if temperature == 0:
67
+ generate_kwargs["do_sample"] = False
68
+
69
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
70
+ t.start()
71
+
72
+ partial_text = ""
73
+ for new_text in streamer:
74
+ partial_text += new_text
75
+ yield partial_text
76
+
77
+ yield partial_text
78
 
 
 
79
 
 
 
 
80
  demo = gr.ChatInterface(
81
+ fn=chat,
82
+ examples=[["Write me a poem about Machine Learning."]],
83
+ # multimodal=False,
84
+ additional_inputs_accordion=gr.Accordion(
85
+ label="⚙️ Parameters", open=False, render=False
86
+ ),
87
  additional_inputs=[
 
 
 
88
  gr.Slider(
89
+ minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
90
+ ),
91
+ gr.Checkbox(label="Sampling", value=True),
92
+ gr.Slider(
93
+ minimum=128,
94
+ maximum=4096,
95
+ step=1,
96
+ value=512,
97
+ label="Max new tokens",
98
+ render=False,
99
  ),
100
  ],
101
+ stop_btn="Stop Generation",
102
+ title="Chat With LLMs",
103
+ description="Now Running [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct)",
104
  )
105
+ demo.launch()