Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from ultralytics import YOLO | |
import torch | |
import cv2 | |
import numpy as np | |
from fastapi import FastAPI, File, UploadFile | |
from PIL import Image | |
import io | |
# 初始化 FastAPI | |
app = FastAPI() | |
# 加载模型 | |
model = YOLO("NailongKiller.yolo11n.pt") | |
def detect_objects(image): | |
# 运行推理 | |
results = model(image) | |
# 获取第一个结果 | |
result = results[0] | |
# 在图像上绘制检测框 | |
annotated_image = result.plot() | |
# 转换为RGB格式 | |
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) | |
return annotated_image | |
# API端点 | |
async def detect_api(file: UploadFile = File(...)): | |
# 读取上传的图片 | |
contents = await file.read() | |
image = Image.open(io.BytesIO(contents)) | |
# 转换为numpy数组 | |
image_np = np.array(image) | |
# 运行推理 | |
results = model(image_np) | |
result = results[0] | |
# 获取检测结果 | |
detections = [] | |
for box in result.boxes: | |
detection = { | |
"bbox": box.xyxy[0].tolist(), # 边界框坐标 | |
"confidence": float(box.conf[0]), # 置信度 | |
"class": int(box.cls[0]) # 类别 | |
} | |
detections.append(detection) | |
return {"detections": detections} | |
# 创建Gradio界面 | |
demo = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="numpy"), | |
outputs=gr.Image(), | |
title="奶龙杀手 (Nailong Killer)", | |
description="上传图片来检测奶龙 (Upload an image to detect Nailong)", | |
examples=["example1.jpg", "example2.jpg"] | |
) | |
# 将Gradio接口挂载到FastAPI | |
app = gr.mount_gradio_app(app, demo, path="/") | |
# 启动应用 | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |