Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ultralytics import YOLO | |
import torch | |
import cv2 | |
import numpy as np | |
from fastapi import FastAPI, File, UploadFile | |
from PIL import Image | |
import io | |
import os | |
# 初始化 FastAPI | |
app = FastAPI() | |
# 加载模型 | |
model = YOLO("NailongKiller.yolo11n.pt") | |
def detect_objects(image): | |
if image is None: | |
return None, "No image provided" | |
try: | |
# 运行推理 | |
results = model(image) | |
result = results[0] | |
# 在图像上绘制检测框 | |
annotated_image = result.plot() | |
annotated_image = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) | |
# 获取检测结果统计 | |
num_detections = len(result.boxes) | |
detection_info = f"检测到 {num_detections} 个目标" | |
return annotated_image, detection_info | |
except Exception as e: | |
return None, f"Error: {str(e)}" | |
# 创建Gradio界面 | |
demo = gr.Interface( | |
fn=detect_objects, | |
inputs=gr.Image(type="numpy", label="输入图片 | Input Image"), | |
outputs=[ | |
gr.Image(type="numpy", label="检测结果 | Detection Result"), | |
gr.Textbox(label="检测信息 | Detection Info") | |
], | |
title="🐉 奶龙杀手 (NailongKiller)", | |
description=""" | |
这是一个基于 YOLO 的奶龙检测系统。上传图片即可自动检测图中的奶龙。 | |
This is a YOLO-based Nailong detection system. Upload an image to detect Nailong automatically. | |
""", | |
theme=gr.themes.Default(), | |
allow_flagging="never", | |
examples=["example1.jpg", "example2.jpg"] if all(os.path.exists(f) for f in ["example1.jpg", "example2.jpg"]) else None | |
) | |
# API端点 | |
async def detect_api(file: UploadFile = File(...)): | |
contents = await file.read() | |
image = Image.open(io.BytesIO(contents)) | |
image_np = np.array(image) | |
results = model(image_np) | |
result = results[0] | |
detections = [] | |
for box in result.boxes: | |
detection = { | |
"bbox": box.xyxy[0].tolist(), | |
"confidence": float(box.conf[0]), | |
"class": int(box.cls[0]) | |
} | |
detections.append(detection) | |
return {"detections": detections} | |
# 将Gradio接口挂载到FastAPI | |
app = gr.mount_gradio_app(app, demo, path="/") | |
# 启动应用 | |
if __name__ == "__main__": | |
import uvicorn | |
uvicorn.run(app, host="0.0.0.0", port=7860) |