Spaces:
Running
on
Zero
Running
on
Zero
File size: 1,745 Bytes
8d9f842 e45be51 0ce6f4c 8d9f842 e45be51 8d9f842 0ce6f4c 57f4ecb 0ce6f4c 57f4ecb 8d9f842 e45be51 e9671ed 57f4ecb 6fce26b 57f4ecb e9671ed 0f3261d e45be51 0ce6f4c e45be51 57f4ecb 8d9f842 e45be51 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 |
import gradio as gr
from ultralytics import YOLO
from fastapi import FastAPI, File, UploadFile
from PIL import Image
import numpy as np
import io
import torch
import spaces # 导入 spaces 模块
# 初始化 FastAPI 和模型
app = FastAPI()
# 检查 GPU 是否可用,并选择设备
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = YOLO('NailongKiller.yolo11n.pt').to(device)
@spaces.GPU # 使用装饰器标记需要 GPU 的函数
def predict(img):
img = img.to(device)
results = model.predict(img)
return results[0].plot()
# Gradio 界面
demo = gr.Interface(
predict,
inputs=[
gr.Image(label="输入图片")
],
outputs=[
gr.Image(label="检测结果", type="numpy")
],
title="🐉 奶龙杀手 (NailongKiller)",
description="上传图片来检测奶龙 | Upload an image to detect Nailong",
examples=[
["example1.jpg"]
],
cache_examples=True
)
# API 端点
@app.post("/detect/")
async def detect_api(file: UploadFile = File(...)):
contents = await file.read()
image = Image.open(io.BytesIO(contents))
image_np = np.array(image)
image_np = torch.from_numpy(image_np).to(device)
results = model.predict(image_np)
result = results[0]
detections = []
for box in result.boxes:
detection = {
"bbox": box.xyxy[0].tolist(),
"confidence": float(box.conf[0]),
"class": int(box.cls[0])
}
detections.append(detection)
return {"detections": detections}
# 挂载 Gradio 到 FastAPI
app = gr.mount_gradio_app(app, demo, path="/")
# 启动应用
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) |