mice-pose-gpu / app.py
Hakureirm's picture
Update app.py
11c09d2 verified
raw
history blame
11.9 kB
import os
import gradio as gr
from ultralytics import YOLO
from fastapi import FastAPI
from PIL import Image
import torch
import spaces
import numpy as np
import cv2
from pathlib import Path
import tempfile
# 从环境变量获取密码
APP_USERNAME = "admin" # 用户名保持固定
APP_PASSWORD = os.getenv("APP_PASSWORD", "default_password") # 从环境变量获取密码
app = FastAPI()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = YOLO('kunin-mice-pose.v0.1.0.pt')
# 定义认证状态
class AuthState:
def __init__(self):
self.is_logged_in = False
auth_state = AuthState()
def login(username, password):
"""登录验证"""
if username == APP_USERNAME and password == APP_PASSWORD:
auth_state.is_logged_in = True
return gr.update(visible=False), gr.update(visible=True), "登录成功"
return gr.update(visible=True), gr.update(visible=False), "用户名或密码错误"
@spaces.GPU(duration=300)
def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8):
"""
处理视频并进行小鼠检测
Args:
video_path: 输入视频路径
process_seconds: 处理时长(秒)
conf_threshold: 置信度阈值(0-1)
max_det: 每帧最大检测数量
"""
if not auth_state.is_logged_in:
return None, "请先登录"
# 创建临时目录保存输出视频
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
output_path = tmp_file.name
# 获取视频信息
cap = cv2.VideoCapture(video_path)
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
cap.release()
# 创建视频写入器
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
video_writer = cv2.VideoWriter(
output_path,
fourcc,
fps,
(width, height)
)
# 计算基于分辨率的线宽
base_size = min(width, height)
line_thickness = max(1, int(base_size * 0.002)) # 0.2% 的最小边长
# 设置推理参数并处理视频
results = model.predict(
source=video_path,
device=device,
conf=conf_threshold,
save=False,
show=False,
stream=True,
line_width=line_thickness, # 线宽
boxes=True, # 显示边界框
show_labels=True,
show_conf=True,
vid_stride=1,
max_det=max_det,
retina_masks=True # 更精细的显示
)
# 处理结果
frame_count = 0
detection_info = []
# 用于记录轨迹和热图数据
all_positions = []
heatmap = np.zeros((height, width), dtype=np.float32)
for r in results:
frame = r.plot()
# 收集位置信息
if hasattr(r, 'keypoints') and r.keypoints is not None:
# 打印关键点对象信息
print(f"Keypoints type: {type(r.keypoints)}")
print(f"Keypoints data: {r.keypoints}")
for kpts in r.keypoints:
if isinstance(kpts, torch.Tensor):
kpts = kpts.cpu().numpy()
print(f"Single keypoints shape: {kpts.shape}") # 打印形状
print(f"Single keypoints data: {kpts}") # 打印数据
# 确保关键点数据是正确的格式
if isinstance(kpts, np.ndarray):
if len(kpts.shape) == 3: # [num_objects, num_keypoints, 3]
for obj_kpts in kpts:
if len(obj_kpts) > 0:
x, y = obj_kpts[0][:2] # 使用第一个关键点的x,y坐标
if isinstance(x, (int, float)) and isinstance(y, (int, float)):
x, y = int(x), int(y)
all_positions.append([x, y])
# 更新热图,使用高斯核来平滑
if 0 <= x < width and 0 <= y < height:
# 创建高斯核心点
sigma = 5 # 调整这个值来改变热点大小
kernel_size = 15 # 必须是奇数
temp_heatmap = np.zeros((height, width), dtype=np.float32)
temp_heatmap[y, x] = 1
temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma)
heatmap += temp_heatmap
elif len(kpts.shape) == 2: # [num_keypoints, 3]
if len(kpts) > 0:
x, y = kpts[0][:2] # 使用第一个关键点的x,y坐标
if isinstance(x, (int, float)) and isinstance(y, (int, float)):
x, y = int(x), int(y)
all_positions.append([x, y])
# 更新热图,使用高斯核来平滑
if 0 <= x < width and 0 <= y < height:
# 创建高斯核心点
sigma = 5 # 调整这个值来改变热点大小
kernel_size = 15 # 必须是奇数
temp_heatmap = np.zeros((height, width), dtype=np.float32)
temp_heatmap[y, x] = 1
temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma)
heatmap += temp_heatmap
# 收集检测信息
frame_info = {
"frame": frame_count + 1,
"count": len(r.boxes),
"detections": []
}
for box in r.boxes:
conf = float(box.conf[0])
cls = int(box.cls[0])
cls_name = r.names[cls]
frame_info["detections"].append({
"class": cls_name,
"confidence": f"{conf:.2%}"
})
detection_info.append(frame_info)
# 写入视频
video_writer.write(frame)
frame_count += 1
if process_seconds and frame_count >= total_frames:
break
# 释放视频写入器
video_writer.release()
# 生成分析报告
confidences = [float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']]
hist, bins = np.histogram(confidences, bins=5)
confidence_report = "\n".join([
f"置信度 {bins[i]:.2f}-{bins[i+1]:.2f}: {hist[i]:3d}个检测 ({hist[i]/len(confidences)*100:.1f}%)"
for i in range(len(hist))
])
report = f"""视频分析报告:
参数设置:
- 置信度阈值: {conf_threshold:.2f}
- 最大检测数量: {max_det}
- 处理时长: {process_seconds}
分析结果:
- 处理帧数: {frame_count}
- 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f}
- 最大检测数: {max([info['count'] for info in detection_info])}
- 最小检测数: {min([info['count'] for info in detection_info])}
置信度分布:
{confidence_report}
"""
# 生成轨迹图
trajectory_img = np.zeros((height, width, 3), dtype=np.uint8) + 255 # 白色背景
points = np.array(all_positions, dtype=np.int32)
if len(points) > 1:
# 绘制轨迹线,使用渐变色
for i in range(len(points) - 1):
ratio = i / (len(points) - 1)
color = (
int((1 - ratio) * 255), # B
0, # G
int(ratio * 255) # R
)
cv2.line(trajectory_img, tuple(points[i]), tuple(points[i + 1]), color, 2)
# 绘制起点和终点
cv2.circle(trajectory_img, tuple(points[0]), 8, (0, 255, 0), -1) # 绿色起点
cv2.circle(trajectory_img, tuple(points[-1]), 8, (255, 0, 0), -1) # 红色终点
# 生成热图
heatmap_normalized = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX)
heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET)
# 保存图像
trajectory_path = output_path.replace('.mp4', '_trajectory.png')
heatmap_path = output_path.replace('.mp4', '_heatmap.png')
cv2.imwrite(trajectory_path, trajectory_img)
cv2.imwrite(heatmap_path, heatmap_colored)
return output_path, trajectory_path, heatmap_path, report
# 创建 Gradio 界面
with gr.Blocks() as demo:
gr.Markdown("# 🐁 小鼠行为分析 (Mice Behavior Analysis)")
# 登录界面
with gr.Group() as login_interface:
username = gr.Textbox(label="用户名")
password = gr.Textbox(label="密码", type="password")
login_button = gr.Button("登录")
login_msg = gr.Textbox(label="消息", interactive=False)
# 主界面
with gr.Group(visible=False) as main_interface:
gr.Markdown("上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior")
with gr.Row():
with gr.Column():
video_input = gr.Video(label="输入视频")
process_seconds = gr.Number(
label="处理时长(秒,0表示处理整个视频)",
value=20
)
conf_threshold = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.05,
label="置信度阈值",
info="越高越严格,建议范围0.2-0.5"
)
max_det = gr.Slider(
minimum=1,
maximum=10,
value=8,
step=1,
label="最大检测数量",
info="每帧最多检测的目标数量"
)
process_btn = gr.Button("开始处理")
with gr.Column():
video_output = gr.Video(label="检测结果")
with gr.Row():
trajectory_output = gr.Image(label="运动轨迹")
heatmap_output = gr.Image(label="热力图")
report_output = gr.Textbox(label="分析报告")
gr.Markdown("""
### 使用说明
1. 上传视频文件
2. 设置处理参数:
- 处理时长:需要分析的视频时长(秒)
- 置信度阈值:检测的置信度要求(越高越严格)
- 最大检测数量:每帧最多检测的目标数量
3. 等待处理完成
4. 查看检测结果视频和分析报告
### 注意事项
- 支持常见视频格式(mp4, avi 等)
- 建议视频分辨率不超过 1920x1080
- 处理时间与视频长度和分辨率相关
- 置信度建议范围:0.2-0.5
- 最大检测数量建议根据实际场景设置
""")
# 设置事件处理
login_button.click(
fn=login,
inputs=[username, password],
outputs=[login_interface, main_interface, login_msg]
)
process_btn.click(
fn=process_video,
inputs=[video_input, process_seconds, conf_threshold, max_det],
outputs=[video_output, trajectory_output, heatmap_output, report_output]
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)