mice-pose-gpu / app.py
Hakureirm's picture
Update app.py
c96ef21 verified
raw
history blame
1.75 kB
import gradio as gr
from ultralytics import YOLO
from fastapi import FastAPI
from PIL import Image
import torch
import spaces
import numpy as np
app = FastAPI()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = YOLO('NailongKiller.yolo11n.pt').to(device)
@spaces.GPU
def predict(img):
# 将输入图像转换为PIL Image对象
input_image = Image.fromarray(img)
original_size = input_image.size
# 计算填充尺寸
max_size = max(original_size)
pad_w = max_size - original_size[0]
pad_h = max_size - original_size[1]
# 创建方形画布并保持宽高比
padded_img = Image.new('RGB', (max_size, max_size), (114, 114, 114)) # 使用灰色填充
padded_img.paste(input_image, (pad_w//2, pad_h//2))
# 转换为numpy数组并进行预测
img_array = np.array(padded_img)
# 进行预测
results = model.predict(
img_array,
conf=0.30, # 置信度阈值
iou=0.45, # IOU阈值
max_det=20 # 最大检测数量
)
# 获取预测结果
result_img = results[0].plot()
# 裁剪回原始尺寸
if pad_w > 0 or pad_h > 0:
result_img = result_img[pad_h//2:pad_h//2 + original_size[1],
pad_w//2:pad_w//2 + original_size[0]]
return result_img
demo = gr.Interface(
fn=predict,
inputs=gr.Image(label="输入图片"),
outputs=gr.Image(label="检测结果", type="numpy"),
title="🐉 奶龙杀手 (NailongKiller)",
description="上传图片来检测奶龙 | Upload an image to detect Nailong",
examples=[["example1.jpg"]],
cache_examples=True
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)