Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
from ultralytics import YOLO | |
from fastapi import FastAPI | |
from PIL import Image | |
import torch | |
import spaces | |
import numpy as np | |
app = FastAPI() | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
model = YOLO('NailongKiller.yolo11n.pt').to(device) | |
def predict(img): | |
# 优化图像预处理 | |
img_resized = np.array(Image.fromarray(img).resize((640, 640))) | |
# 规范化像素值到 0-1 范围 | |
img_tensor = torch.tensor(img_resized, dtype=torch.float32).permute(2, 0, 1).unsqueeze(0).div(255.0).to(device) | |
# 设置模型预测参数以加快后处理速度 | |
results = model.predict( | |
img_tensor, | |
conf=0.50, # 提高置信度阈值 | |
iou=0.45, # 调整 IOU 阈值 | |
max_det=100 # 限制最大检测数量 | |
) | |
return results[0].plot() | |
demo = gr.Interface( | |
fn=predict, | |
inputs=gr.Image(label="输入图片"), | |
outputs=gr.Image(label="检测结果", type="numpy"), | |
title="🐉 奶龙杀手 (NailongKiller)", | |
description="上传图片来检测奶龙 | Upload an image to detect Nailong", | |
examples=[["example1.jpg"]], | |
cache_examples=True | |
) | |
if __name__ == "__main__": | |
demo.launch(server_name="0.0.0.0", server_port=7860) |