Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,54 @@
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
from fastapi import FastAPI
|
4 |
-
import
|
5 |
import torch
|
6 |
import spaces
|
7 |
import numpy as np
|
|
|
8 |
from pathlib import Path
|
|
|
9 |
|
10 |
app = FastAPI()
|
11 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
-
model = YOLO('kunin-mice-pose.v0.1.0.pt')
|
13 |
|
14 |
@spaces.GPU
|
15 |
-
def process_video(video_path, process_seconds=20):
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# 获取视频信息
|
20 |
cap = cv2.VideoCapture(video_path)
|
21 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
22 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
23 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
24 |
-
total_frames = int(process_seconds * fps)
|
|
|
25 |
|
26 |
# 创建视频写入器
|
27 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
28 |
video_writer = cv2.VideoWriter(
|
29 |
-
|
30 |
fourcc,
|
31 |
fps,
|
32 |
(width, height)
|
33 |
)
|
34 |
|
35 |
-
#
|
36 |
-
frame_count = 0
|
37 |
-
total_detections = 0
|
38 |
-
max_mice = 0
|
39 |
-
detection_stats = []
|
40 |
-
|
41 |
-
# 处理视频
|
42 |
results = model.predict(
|
43 |
source=video_path,
|
44 |
device=device,
|
45 |
-
conf=
|
46 |
save=False,
|
47 |
show=False,
|
48 |
stream=True,
|
@@ -51,60 +57,109 @@ def process_video(video_path, process_seconds=20):
|
|
51 |
show_labels=True,
|
52 |
show_conf=True,
|
53 |
vid_stride=1,
|
|
|
54 |
)
|
55 |
|
|
|
|
|
|
|
|
|
56 |
for r in results:
|
57 |
-
#
|
58 |
frame = r.plot()
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
|
64 |
# 写入视频
|
65 |
video_writer.write(frame)
|
66 |
|
67 |
frame_count += 1
|
68 |
-
if frame_count >= total_frames:
|
69 |
break
|
70 |
|
71 |
-
#
|
72 |
video_writer.release()
|
73 |
-
cap.release()
|
74 |
|
75 |
-
#
|
76 |
-
|
77 |
-
|
|
|
|
|
78 |
- 处理时长: {process_seconds}秒
|
79 |
-
|
80 |
-
|
81 |
-
-
|
82 |
-
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
percentage = frames / frame_count * 100
|
90 |
-
output_text += f"\n{count}只小鼠: {frames}帧 ({percentage:.1f}%)"
|
91 |
|
92 |
-
return
|
93 |
|
94 |
demo = gr.Interface(
|
95 |
fn=process_video,
|
96 |
inputs=[
|
97 |
gr.Video(label="输入视频"),
|
98 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
],
|
100 |
outputs=[
|
101 |
gr.Video(label="检测结果"),
|
102 |
-
gr.Textbox(label="
|
103 |
],
|
104 |
-
title="🐁
|
105 |
-
description="
|
106 |
-
|
107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
|
110 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from ultralytics import YOLO
|
3 |
from fastapi import FastAPI
|
4 |
+
from PIL import Image
|
5 |
import torch
|
6 |
import spaces
|
7 |
import numpy as np
|
8 |
+
import cv2
|
9 |
from pathlib import Path
|
10 |
+
import tempfile
|
11 |
|
12 |
app = FastAPI()
|
13 |
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
14 |
+
model = YOLO('kunin-mice-pose.v0.1.0.pt')
|
15 |
|
16 |
@spaces.GPU
|
17 |
+
def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8):
|
18 |
+
"""
|
19 |
+
处理视频并进行小鼠检测
|
20 |
+
Args:
|
21 |
+
video_path: 输入视频路径
|
22 |
+
process_seconds: 处理时长(秒)
|
23 |
+
conf_threshold: 置信度阈值(0-1)
|
24 |
+
max_det: 每帧最大检测数量
|
25 |
+
"""
|
26 |
+
# 创建临时目录保存输出视频
|
27 |
+
with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file:
|
28 |
+
output_path = tmp_file.name
|
29 |
|
30 |
# 获取视频信息
|
31 |
cap = cv2.VideoCapture(video_path)
|
32 |
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
33 |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
34 |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
35 |
+
total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
36 |
+
cap.release()
|
37 |
|
38 |
# 创建视频写入器
|
39 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
40 |
video_writer = cv2.VideoWriter(
|
41 |
+
output_path,
|
42 |
fourcc,
|
43 |
fps,
|
44 |
(width, height)
|
45 |
)
|
46 |
|
47 |
+
# 设置推理参数并处理视频
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
results = model.predict(
|
49 |
source=video_path,
|
50 |
device=device,
|
51 |
+
conf=conf_threshold, # 使用用户设置的置信度阈值
|
52 |
save=False,
|
53 |
show=False,
|
54 |
stream=True,
|
|
|
57 |
show_labels=True,
|
58 |
show_conf=True,
|
59 |
vid_stride=1,
|
60 |
+
max_det=max_det, # 使用用户设置的最大检测数量
|
61 |
)
|
62 |
|
63 |
+
# 处理结果
|
64 |
+
frame_count = 0
|
65 |
+
detection_info = []
|
66 |
+
|
67 |
for r in results:
|
68 |
+
# 获取绘制了预测结果的帧
|
69 |
frame = r.plot()
|
70 |
+
|
71 |
+
# 收集检测信息
|
72 |
+
frame_info = {
|
73 |
+
"frame": frame_count + 1,
|
74 |
+
"count": len(r.boxes),
|
75 |
+
"detections": []
|
76 |
+
}
|
77 |
+
|
78 |
+
for box in r.boxes:
|
79 |
+
conf = float(box.conf[0])
|
80 |
+
cls = int(box.cls[0])
|
81 |
+
cls_name = r.names[cls]
|
82 |
+
frame_info["detections"].append({
|
83 |
+
"class": cls_name,
|
84 |
+
"confidence": f"{conf:.2%}"
|
85 |
+
})
|
86 |
+
|
87 |
+
detection_info.append(frame_info)
|
88 |
|
89 |
# 写入视频
|
90 |
video_writer.write(frame)
|
91 |
|
92 |
frame_count += 1
|
93 |
+
if process_seconds and frame_count >= total_frames:
|
94 |
break
|
95 |
|
96 |
+
# 释放视频写入器
|
97 |
video_writer.release()
|
|
|
98 |
|
99 |
+
# 生成分析报告
|
100 |
+
report = f"""视频分析报告:
|
101 |
+
参数设置:
|
102 |
+
- 置信度阈值: {conf_threshold:.2f}
|
103 |
+
- 最大检测数量: {max_det}
|
104 |
- 处理时长: {process_seconds}秒
|
105 |
+
|
106 |
+
分析结果:
|
107 |
+
- 处理帧数: {frame_count}
|
108 |
+
- 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f}
|
109 |
+
- 最大检测数: {max([info['count'] for info in detection_info])}
|
110 |
+
- 最小检测数: {min([info['count'] for info in detection_info])}
|
111 |
+
|
112 |
+
置信度分布:
|
113 |
+
{np.histogram([float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']], bins=5)[0].tolist()}
|
114 |
+
"""
|
|
|
|
|
115 |
|
116 |
+
return output_path, report
|
117 |
|
118 |
demo = gr.Interface(
|
119 |
fn=process_video,
|
120 |
inputs=[
|
121 |
gr.Video(label="输入视频"),
|
122 |
+
gr.Number(label="处理时长(秒,0表示处理整个视频)", value=20),
|
123 |
+
gr.Slider(
|
124 |
+
minimum=0.1,
|
125 |
+
maximum=1.0,
|
126 |
+
value=0.2,
|
127 |
+
step=0.05,
|
128 |
+
label="置信度阈值",
|
129 |
+
info="越高越严格,建议范围0.2-0.5"
|
130 |
+
),
|
131 |
+
gr.Slider(
|
132 |
+
minimum=1,
|
133 |
+
maximum=10,
|
134 |
+
value=8,
|
135 |
+
step=1,
|
136 |
+
label="最大检测数量",
|
137 |
+
info="每帧最多检测的目标数量"
|
138 |
+
)
|
139 |
],
|
140 |
outputs=[
|
141 |
gr.Video(label="检测结果"),
|
142 |
+
gr.Textbox(label="分析报告")
|
143 |
],
|
144 |
+
title="🐁 小鼠行为分析 (Mice Behavior Analysis)",
|
145 |
+
description="上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior",
|
146 |
+
article="""
|
147 |
+
### 使用说明
|
148 |
+
1. 上传视频文件
|
149 |
+
2. 设置处理参数:
|
150 |
+
- 处理时长:需要分析的视频时长(秒)
|
151 |
+
- 置信度阈值:检测的置信度要求(越高越严格)
|
152 |
+
- 最大检测数量:每帧最多检测的目标数量
|
153 |
+
3. 等待处理完成
|
154 |
+
4. 查看检测结果视频和分析报告
|
155 |
+
|
156 |
+
### 注意事项
|
157 |
+
- 支持常见视频格式(mp4, avi 等)
|
158 |
+
- 建议视频分辨率不超过 1920x1080
|
159 |
+
- 处理时间与视频长度和分辨率相关
|
160 |
+
- 置信度建议范围:0.2-0.5
|
161 |
+
- 最大检测数量建议根据实际场景设置
|
162 |
+
"""
|
163 |
)
|
164 |
|
165 |
if __name__ == "__main__":
|