import os import gradio as gr from ultralytics import YOLO from fastapi import FastAPI from PIL import Image import torch import spaces import numpy as np import cv2 from pathlib import Path import tempfile import imageio from tqdm import tqdm import logging # 新增: 配置logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S' ) logger = logging.getLogger(__name__) # 从环境变量获取密码 APP_USERNAME = "admin" # 用户名保持固定 APP_PASSWORD = os.getenv("APP_PASSWORD", "default_password") # 从环境变量获取密码 app = FastAPI() device = 'cuda' if torch.cuda.is_available() else 'cpu' model = YOLO('kunin-mice-pose.v0.1.5n.pt') # 定义认证状态 class AuthState: def __init__(self): self.is_logged_in = False auth_state = AuthState() def login(username, password): """登录验证""" logger.info(f"用户尝试登录: {username}") if username == APP_USERNAME and password == APP_PASSWORD: auth_state.is_logged_in = True logger.info("登录成功") return gr.update(visible=False), gr.update(visible=True), "登录成功" logger.warning("登录失败:用户名或密码错误") return gr.update(visible=True), gr.update(visible=False), "用户名或密码错误" @spaces.GPU(duration=300) def process_video(video_path, process_seconds=20, conf_threshold=0.2, max_det=8): """ 处理视频并进行小鼠检测 Args: video_path: 输入视频路径 process_seconds: 处理时长(秒) conf_threshold: 置信度阈值(0-1) max_det: 每帧最大检测数量 """ logger.info(f"开始处理视频: {video_path}") logger.info(f"参数设置 - 处理时长: {process_seconds}秒, 置信度阈值: {conf_threshold}, 最大检测数: {max_det}") if not auth_state.is_logged_in: logger.warning("用户未登录,拒绝访问") return None, "请先登录" # 创建临时目录保存输出视频 logger.info("创建临时输出目录") with tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) as tmp_file: output_path = tmp_file.name # 获取视频信息 logger.info("读取视频信息") cap = cv2.VideoCapture(video_path) fps = int(cap.get(cv2.CAP_PROP_FPS)) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) total_frames = int(process_seconds * fps) if process_seconds else int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) cap.release() logger.info(f"视频信息 - FPS: {fps}, 分辨率: {width}x{height}, 总帧数: {total_frames}") # 创建视频写入器 fourcc = cv2.VideoWriter_fourcc(*'mp4v') video_writer = cv2.VideoWriter( output_path, fourcc, fps, (width, height) ) # 计算基于分辨率的线宽 base_size = min(width, height) line_thickness = max(1, int(base_size * 0.002)) # 0.2% 的最小边长 logger.info("开始YOLO模型推理") results = model.predict( source=video_path, device=device, conf=conf_threshold, save=False, show=False, stream=True, line_width=line_thickness, boxes=True, show_labels=True, show_conf=True, vid_stride=1, max_det=max_det, retina_masks=True, verbose=False # 关闭YOLO默认日志输出 ) logger.info("开始处理检测结果") frame_count = 0 detection_info = [] all_positions = [] heatmap = np.zeros((height, width), dtype=np.float32) # 新增: 创建进度条 pbar = tqdm(total=total_frames, desc="处理视频", unit="帧") for r in results: frame = r.plot() # 收集位置信息 if hasattr(r, 'keypoints') and r.keypoints is not None: kpts = r.keypoints.data if isinstance(kpts, torch.Tensor): kpts = kpts.cpu().numpy() if kpts.shape == (1, 8, 3): # [num_objects, num_keypoints, xyz] x, y = int(kpts[0, 0, 0]), int(kpts[0, 0, 1]) all_positions.append([x, y]) if 0 <= x < width and 0 <= y < height: sigma = 10 kernel_size = 31 temp_heatmap = np.zeros((height, width), dtype=np.float32) temp_heatmap[y, x] = 1 temp_heatmap = cv2.GaussianBlur(temp_heatmap, (kernel_size, kernel_size), sigma) heatmap += temp_heatmap # 收集检测信息 frame_info = { "frame": frame_count + 1, "count": len(r.boxes), "detections": [] } for box in r.boxes: conf = float(box.conf[0]) cls = int(box.cls[0]) cls_name = r.names[cls] frame_info["detections"].append({ "class": cls_name, "confidence": f"{conf:.2%}" }) detection_info.append(frame_info) video_writer.write(frame) frame_count += 1 pbar.update(1) # 更新进度条 if process_seconds and frame_count >= total_frames: break pbar.close() # 关闭进度条 video_writer.release() logger.info(f"视频处理完成,共处理 {frame_count} 帧") # 生成分析报告 confidences = [float(det['confidence'].strip('%'))/100 for info in detection_info for det in info['detections']] hist, bins = np.histogram(confidences, bins=5) confidence_report = "\n".join([ f"置信度 {bins[i]:.2f}-{bins[i+1]:.2f}: {hist[i]:3d}个检测 ({hist[i]/len(confidences)*100:.1f}%)" for i in range(len(hist)) ]) report = f"""视频分析报告: 参数设置: - 置信度阈值: {conf_threshold:.2f} - 最大检测数量: {max_det} - 处理时长: {process_seconds}秒 分析结果: - 处理帧数: {frame_count} - 平均每帧检测到的老鼠数: {np.mean([info['count'] for info in detection_info]):.1f} - 最大检测数: {max([info['count'] for info in detection_info])} - 最小检测数: {min([info['count'] for info in detection_info])} 置信度分布: {confidence_report} """ def filter_trajectories(positions, width, height, max_jump_distance=100): """ 过滤轨迹中的异常点 Args: positions: 位置列表 [[x1,y1], [x2,y2],...] width: 视频宽度 height: 视频高度 max_jump_distance: 允许��最大跳跃距离 """ if len(positions) < 3: return positions filtered_positions = [] last_valid_pos = None for i, pos in enumerate(positions): x, y = pos if not (0 <= x < width and 0 <= y < height): continue if last_valid_pos is None: filtered_positions.append(pos) last_valid_pos = pos continue distance = np.sqrt((x - last_valid_pos[0])**2 + (y - last_valid_pos[1])**2) if distance > max_jump_distance: if len(filtered_positions) > 0: next_valid_pos = None for next_pos in positions[i:]: nx, ny = next_pos if (0 <= nx < width and 0 <= ny < height): next_distance = np.sqrt((nx - last_valid_pos[0])**2 + (ny - last_valid_pos[1])**2) if next_distance <= max_jump_distance: next_valid_pos = next_pos break if next_valid_pos is not None: steps = max(2, int(distance / max_jump_distance)) for j in range(1, steps): alpha = j / steps interp_x = int(last_valid_pos[0] * (1 - alpha) + next_valid_pos[0] * alpha) interp_y = int(last_valid_pos[1] * (1 - alpha) + next_valid_pos[1] * alpha) filtered_positions.append([interp_x, interp_y]) filtered_positions.append(next_valid_pos) last_valid_pos = next_valid_pos else: filtered_positions.append(pos) last_valid_pos = pos window_size = 5 smoothed_positions = [] if len(filtered_positions) >= window_size: smoothed_positions.extend(filtered_positions[:window_size//2]) for i in range(window_size//2, len(filtered_positions) - window_size//2): window = filtered_positions[i-window_size//2:i+window_size//2+1] smoothed_x = int(np.mean([p[0] for p in window])) smoothed_y = int(np.mean([p[1] for p in window])) smoothed_positions.append([smoothed_x, smoothed_y]) smoothed_positions.extend(filtered_positions[-window_size//2:]) else: smoothed_positions = filtered_positions return smoothed_positions # 修改轨迹图生成部分 trajectory_img = np.zeros((height, width, 3), dtype=np.uint8) + 255 points = np.array(all_positions, dtype=np.int32) if len(points) > 1: filtered_points = filter_trajectories(points.tolist(), width, height) points = np.array(filtered_points, dtype=np.int32) for i in range(len(points) - 1): ratio = i / (len(points) - 1) color = ( int((1 - ratio) * 255), # B 50, # G int(ratio * 255) # R ) cv2.line(trajectory_img, tuple(points[i]), tuple(points[i + 1]), color, 2) cv2.circle(trajectory_img, tuple(points[0]), 8, (0, 255, 0), -1) cv2.circle(trajectory_img, tuple(points[-1]), 8, (0, 0, 255), -1) arrow_interval = max(len(points) // 20, 1) for i in range(0, len(points) - arrow_interval, arrow_interval): pt1 = tuple(points[i]) pt2 = tuple(points[i + arrow_interval]) angle = np.arctan2(pt2[1] - pt1[1], pt2[0] - pt1[0]) cv2.arrowedLine(trajectory_img, pt1, pt2, (100, 100, 100), 1, tipLength=0.2) if np.max(heatmap) > 0: heatmap_normalized = cv2.normalize(heatmap, None, 0, 255, cv2.NORM_MINMAX) heatmap_colored = cv2.applyColorMap(heatmap_normalized.astype(np.uint8), cv2.COLORMAP_JET) alpha = 0.7 heatmap_colored = cv2.addWeighted(heatmap_colored, alpha, np.full_like(heatmap_colored, 255), 1-alpha, 0) trajectory_frames = [] heatmap_frames = [] base_trajectory = np.zeros((height, width, 3), dtype=np.uint8) + 255 base_heatmap = np.zeros((height, width), dtype=np.float32) frame_interval = max(1, len(filtered_points) // 50) for i in range(0, len(filtered_points), frame_interval): current_points = filtered_points[:i+1] frame_trajectory = base_trajectory.copy() if len(current_points) > 1: points = np.array(current_points, dtype=np.int32) for j in range(len(points) - 1): ratio = j / (len(current_points) - 1) color = ( int((1 - ratio) * 255), 50, int(ratio * 255) ) cv2.line(frame_trajectory, tuple(points[j]), tuple(points[j + 1]), color, 2) cv2.circle(frame_trajectory, tuple(points[-1]), 8, (0, 0, 255), -1) trajectory_frames.append(frame_trajectory) frame_heatmap = base_heatmap.copy() for x, y in current_points: if 0 <= x < width and 0 <= y < height: temp_heatmap = np.zeros((height, width), dtype=np.float32) temp_heatmap[y, x] = 1 temp_heatmap = cv2.GaussianBlur(temp_heatmap, (31, 31), 10) frame_heatmap += temp_heatmap if np.max(frame_heatmap) > 0: frame_heatmap_norm = cv2.normalize(frame_heatmap, None, 0, 255, cv2.NORM_MINMAX) frame_heatmap_color = cv2.applyColorMap(frame_heatmap_norm.astype(np.uint8), cv2.COLORMAP_JET) frame_heatmap_color = cv2.addWeighted(frame_heatmap_color, 0.7, np.full_like(frame_heatmap_color, 255), 0.3, 0) heatmap_frames.append(frame_heatmap_color) logger.info("开始生成轨迹图和热力图") trajectory_gif_path = output_path.replace('.mp4', '_trajectory.gif') heatmap_gif_path = output_path.replace('.mp4', '_heatmap.gif') imageio.mimsave(trajectory_gif_path, trajectory_frames, duration=50) imageio.mimsave(heatmap_gif_path, heatmap_frames, duration=50) trajectory_path = output_path.replace('.mp4', '_trajectory.png') heatmap_path = output_path.replace('.mp4', '_heatmap.png') cv2.imwrite(trajectory_path, trajectory_img) cv2.imwrite(heatmap_path, heatmap_colored) logger.info("轨迹图和热力图生成完成") logger.info("开始生成GIF动画") imageio.mimsave(trajectory_gif_path, trajectory_frames, duration=50) imageio.mimsave(heatmap_gif_path, heatmap_frames, duration=50) logger.info("GIF动画生成完成") logger.info("所有处理完成,准备返回结果") return output_path, trajectory_path, heatmap_path, trajectory_gif_path, heatmap_gif_path, report # 创建 Gradio 界面 with gr.Blocks() as demo: gr.Markdown("# 🐁 小鼠行为分析 (Mice Behavior Analysis)") with gr.Group() as login_interface: username = gr.Textbox(label="用户名") password = gr.Textbox(label="密码", type="password") login_button = gr.Button("登录") login_msg = gr.Textbox(label="消息", interactive=False) with gr.Group(visible=False) as main_interface: gr.Markdown("上传视频来检测和分析小鼠行为 | Upload a video to detect and analyze mice behavior") with gr.Row(): with gr.Column(): video_input = gr.Video(label="输入视频") process_seconds = gr.Number( label="处理时长(秒,0表示处理整个视频)", value=20 ) conf_threshold = gr.Slider( minimum=0.0, maximum=1.0, value=0.2, step=0.05, label="置信度阈值", info="越高越严格,建议范围0.2-0.5" ) max_det = gr.Slider( minimum=1, maximum=10, value=1, step=1, label="最大检测数量", info="每帧最多检测的目标数量" ) process_btn = gr.Button("开始处理") with gr.Column(): video_output = gr.Video(label="检测结果") with gr.Row(): trajectory_output = gr.Image(label="运动轨迹") trajectory_gif_output = gr.Image(label="轨迹动画") with gr.Row(): heatmap_output = gr.Image(label="热力图") heatmap_gif_output = gr.Image(label="热力图动画") report_output = gr.Textbox(label="分析报告") gr.Markdown(""" ### 使用说明 1. 上传视频文件 2. 设置处理参数: - 处理时长:需要分析的视频时长(秒) - 置信度阈值:检测的置信度要求(越高越严格) - 最大检测数量:每帧最多检测的目标数量 3. 等待处理完成 4. 查看检测结果视频和分析报告 ### 注意事项 - 支持常见视频格式(mp4, avi 等) - 建议视频分辨率不超过 1920x1080 - 处理时间与视频长度和分辨率相关 - 置信度建议范围:0.2-0.5 - 最大检测数量建议根据实际场景设置 """) login_button.click( fn=login, inputs=[username, password], outputs=[login_interface, main_interface, login_msg] ) process_btn.click( fn=process_video, inputs=[video_input, process_seconds, conf_threshold, max_det], outputs=[video_output, trajectory_output, heatmap_output, trajectory_gif_output, heatmap_gif_output, report_output] ) if __name__ == "__main__": demo.launch(server_name="0.0.0.0", server_port=7860)