Spaces:
Build error
Build error
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer | |
from transformers import T5Tokenizer, T5ForConditionalGeneration | |
# tokenizer = T5Tokenizer.from_pretrained("ClueAI/PromptCLUE-base") | |
# model = T5ForConditionalGeneration.from_pretrained("ClueAI/PromptCLUE-base") | |
tokenizer = T5Tokenizer.from_pretrained("ClueAI/PromptCLUE-base-v1-5") | |
model = T5ForConditionalGeneration.from_pretrained("ClueAI/PromptCLUE-base-v1-5") | |
device = torch.device('cpu') | |
model.to(device) | |
def preprocess(text): | |
return text.replace("\n", "_") | |
def postprocess(text): | |
return text.replace("_", "\n") | |
def answer(text, sample=False, top_p=0.6): | |
'''sample:是否抽样。生成任务,可以设置为True; | |
top_p:0-1之间,生成的内容越多样''' | |
text = preprocess(text) | |
encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=768, return_tensors="pt").to(device) | |
if not sample: | |
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=128, num_beams=4, length_penalty=0.6) | |
else: | |
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=128, do_sample=True, top_p=top_p) | |
out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True) | |
return postprocess(out_text[0]) | |
iface = gr.Interface(fn=answer, inputs="text", outputs="text") | |
iface.launch() |