ChineseLLM / app.py
Halo Master
app
145c8a7
raw
history blame
1.4 kB
import gradio as gr
import torch
from transformers import AutoTokenizer
from transformers import T5Tokenizer, T5ForConditionalGeneration
# tokenizer = T5Tokenizer.from_pretrained("ClueAI/PromptCLUE-base")
# model = T5ForConditionalGeneration.from_pretrained("ClueAI/PromptCLUE-base")
tokenizer = T5Tokenizer.from_pretrained("ClueAI/PromptCLUE-base-v1-5")
model = T5ForConditionalGeneration.from_pretrained("ClueAI/PromptCLUE-base-v1-5")
device = torch.device('cpu')
model.to(device)
def preprocess(text):
return text.replace("\n", "_")
def postprocess(text):
return text.replace("_", "\n")
def answer(text, sample=False, top_p=0.6):
'''sample:是否抽样。生成任务,可以设置为True;
top_p:0-1之间,生成的内容越多样'''
text = preprocess(text)
encoding = tokenizer(text=[text], truncation=True, padding=True, max_length=768, return_tensors="pt").to(device)
if not sample:
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=128, num_beams=4, length_penalty=0.6)
else:
out = model.generate(**encoding, return_dict_in_generate=True, output_scores=False, max_new_tokens=128, do_sample=True, top_p=top_p)
out_text = tokenizer.batch_decode(out["sequences"], skip_special_tokens=True)
return postprocess(out_text[0])
iface = gr.Interface(fn=answer, inputs="text", outputs="text")
iface.launch()