HamidBekam commited on
Commit
10c1d41
·
1 Parent(s): ed05415

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +58 -0
app.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sqlite3
2
+ import pandas as pd
3
+ import streamlit as st
4
+ from transformers import pipeline
5
+ from sklearn.metrics import accuracy_score
6
+
7
+ # Load the data into a pandas dataframe
8
+ df = pd.read_csv('https://raw.githubusercontent.com/SrinidhiRaghavan/AI-Sentiment-Analysis-on-IMDB-Dataset/master/test/imdb_te.csv', encoding= 'unicode_escape')
9
+
10
+ # Create a connection to the database
11
+ conn = sqlite3.connect('movie_reviews.db')
12
+
13
+ # Add a column for the sentiment labels
14
+ df['sentiment'] = ''
15
+
16
+ # Load the data into a table
17
+ df.to_sql('movie_reviews', conn, if_exists='replace', index=False)
18
+
19
+ # Load the pre-trained sentiment analysis model
20
+ classifier = pipeline('sentiment-analysis')
21
+
22
+ # Extract sentiment labels for the movie reviews
23
+ reviews = conn.execute('SELECT text FROM movie_reviews limit 10')
24
+ for i, row in enumerate(reviews):
25
+ review = row[0]
26
+ sentiment = classifier(review[:512])[0]['label']
27
+ if sentiment == 'POSITIVE':
28
+ label = 1
29
+ else:
30
+ label = 0
31
+ conn.execute('UPDATE movie_reviews SET sentiment = ? WHERE rowid = ?', (label, i+1))
32
+ conn.commit()
33
+
34
+ def main():
35
+ # Load the data from the SQLite database
36
+ X = pd.read_sql_query('SELECT text FROM movie_reviews limit 10', conn)
37
+ y = pd.read_sql_query('SELECT sentiment FROM movie_reviews limit 10', conn)
38
+
39
+ # Train a logistic regression model on the sentiment labels
40
+ clf = pipeline('sentiment-analysis')
41
+ y_pred = [int(result['label'] == 'POSITIVE') for result in clf(X['text'].to_list(), truncation=True)]
42
+
43
+ # Evaluate the model on the testing set
44
+ accuracy = accuracy_score(y['sentiment'].astype(int).to_list(), y_pred)
45
+
46
+ # Create a Streamlit app
47
+ st.title('Sentiment Analysis on Movie Reviews')
48
+ st.subheader('Accuracy')
49
+ st.write(f'{accuracy:.2f}')
50
+
51
+ st.subheader('Movie Reviews')
52
+ st.write(X)
53
+
54
+ st.subheader('Sentiment Labels')
55
+ st.write(y)
56
+
57
+ if __name__ == '__main__':
58
+ main()