Hammad112 commited on
Commit
4c1dfcf
·
verified ·
1 Parent(s): 080cd13

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -3
app.py CHANGED
@@ -5,11 +5,12 @@ import os
5
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
  import google.generativeai as genai
7
  from langchain_community.vectorstores import FAISS
8
- from langchain_google_genai import ChatGoogleGenerativeAI
9
  from langchain.chains.question_answering import load_qa_chain
10
  from langchain.prompts import PromptTemplate
11
  from dotenv import load_dotenv
12
  import traceback
 
 
13
 
14
  # Load environment variables
15
  load_dotenv()
@@ -46,8 +47,16 @@ def get_text_chunks(text):
46
  # Function to create an in-memory FAISS vector store
47
  def get_vector_store(text_chunks):
48
  try:
49
- embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001",api_key=google_api_key)
50
- vector_store = FAISS.from_texts(text_chunks, embedding=embeddings)
 
 
 
 
 
 
 
 
51
  return vector_store
52
  except Exception as e:
53
  st.error(f"Error creating vector store: {e}")
 
5
  from langchain_google_genai import GoogleGenerativeAIEmbeddings
6
  import google.generativeai as genai
7
  from langchain_community.vectorstores import FAISS
 
8
  from langchain.chains.question_answering import load_qa_chain
9
  from langchain.prompts import PromptTemplate
10
  from dotenv import load_dotenv
11
  import traceback
12
+ from transformers import pipeline
13
+ from langchain.embeddings import HuggingFaceEmbeddings
14
 
15
  # Load environment variables
16
  load_dotenv()
 
47
  # Function to create an in-memory FAISS vector store
48
  def get_vector_store(text_chunks):
49
  try:
50
+ # Create a pipeline for feature extraction with the specified model
51
+ feature_extractor = pipeline("feature-extraction", model="jinaai/jina-embeddings-v2-base-code", trust_remote_code=True)
52
+
53
+ # Define a function to generate embeddings using the pipeline
54
+ def embedding_function(text):
55
+ # The pipeline returns nested lists, so we flatten it by taking the first item.
56
+ return feature_extractor(text)[0]
57
+
58
+ # Using FAISS to create vector store with the new embeddings function
59
+ vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
60
  return vector_store
61
  except Exception as e:
62
  st.error(f"Error creating vector store: {e}")