Hammad712 commited on
Commit
1061089
·
verified ·
1 Parent(s): 2409240

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +146 -0
app.py ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from huggingface_hub import hf_hub_download
3
+ import torch
4
+ from PIL import Image
5
+ from torchvision import transforms
6
+ from skimage.color import rgb2lab, lab2rgb
7
+ import numpy as np
8
+ import matplotlib.pyplot as plt
9
+ from io import BytesIO
10
+
11
+ # Download the model from Hugging Face Hub
12
+ repo_id = "Hammad712/GAN-Colorization-Model"
13
+ model_filename = "generator.pt"
14
+ model_path = hf_hub_download(repo_id=repo_id, filename=model_filename)
15
+
16
+ # Define the generator model (same architecture as used during training)
17
+ from fastai.vision.learner import create_body
18
+ from torchvision.models import resnet34
19
+ from fastai.vision.models.unet import DynamicUnet
20
+
21
+ def build_generator(n_input=1, n_output=2, size=256):
22
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
+ backbone = create_body(resnet34(), pretrained=True, n_in=n_input, cut=-2)
24
+ G_net = DynamicUnet(backbone, n_output, (size, size)).to(device)
25
+ return G_net
26
+
27
+ # Initialize and load the model
28
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
29
+ G_net = build_generator(n_input=1, n_output=2, size=256)
30
+ G_net.load_state_dict(torch.load(model_path, map_location=device))
31
+ G_net.eval()
32
+
33
+ # Preprocessing function
34
+ def preprocess_image(img_path):
35
+ img = Image.open(img_path).convert("RGB")
36
+ img = transforms.Resize((256, 256), Image.BICUBIC)(img)
37
+ img = np.array(img)
38
+ img_to_lab = rgb2lab(img).astype("float32")
39
+ img_to_lab = transforms.ToTensor()(img_to_lab)
40
+ L = img_to_lab[[0], ...] / 50. - 1.
41
+ return L.unsqueeze(0).to(device)
42
+
43
+ # Inference function
44
+ def colorize_image(img_path, model):
45
+ L = preprocess_image(img_path)
46
+ with torch.no_grad():
47
+ ab = model(L)
48
+ L = (L + 1.) * 50.
49
+ ab = ab * 110.
50
+ Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy()
51
+ rgb_imgs = []
52
+ for img in Lab:
53
+ img_rgb = lab2rgb(img)
54
+ rgb_imgs.append(img_rgb)
55
+ return np.stack(rgb_imgs, axis=0)
56
+
57
+ # Custom CSS
58
+ def set_css(style):
59
+ st.markdown(f"<style>{style}</style>", unsafe_allow_html=True)
60
+
61
+ # Combined dark mode styles
62
+ combined_css = """
63
+ .main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
64
+ .block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); }
65
+ .stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; }
66
+ .stSpinner { color: #4CAF50; }
67
+ .title {
68
+ font-size: 3rem;
69
+ font-weight: bold;
70
+ display: flex;
71
+ align-items: center;
72
+ justify-content: center;
73
+ }
74
+ .colorful-text {
75
+ background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b);
76
+ -webkit-background-clip: text;
77
+ -webkit-text-fill-color: transparent;
78
+ }
79
+ .black-white-text {
80
+ color: black;
81
+ }
82
+ .small-input .stTextInput>div>input {
83
+ height: 2rem;
84
+ font-size: 0.9rem;
85
+ }
86
+ .small-file-uploader .stFileUploader>div>div {
87
+ height: 2rem;
88
+ font-size: 0.9rem;
89
+ }
90
+ .custom-text {
91
+ font-size: 1.2rem;
92
+ color: #feb47b;
93
+ text-align: center;
94
+ margin-top: -20px;
95
+ margin-bottom: 20px;
96
+ }
97
+ """
98
+
99
+ # Streamlit application
100
+ st.set_page_config(layout="wide")
101
+
102
+ st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
103
+
104
+ st.markdown('<div class="title"><span class="colorful-text">Image</span> <span class="black-white-text">Colorization</span></div>', unsafe_allow_html=True)
105
+ st.markdown('<div class="custom-text">Convert black and white images to color using AI</div>', unsafe_allow_html=True)
106
+
107
+ # Input for image URL or file upload
108
+ with st.expander("Input Options", expanded=True):
109
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png", "webp"], key="upload_file", help="Upload an image file to convert")
110
+
111
+ # Run inference button
112
+ if st.button("Colorize"):
113
+ if uploaded_file is not None:
114
+ with st.spinner('Processing...'):
115
+ try:
116
+ colorized_images = colorize_image(uploaded_file, G_net)
117
+ colorized_image = colorized_images[0]
118
+
119
+ # Display original and colorized images side by side
120
+ st.markdown("### Result")
121
+ col1, col2 = st.columns(2)
122
+
123
+ with col1:
124
+ st.image(uploaded_file, caption='Original Image', use_column_width=True)
125
+ with col2:
126
+ st.image(colorized_image, caption='Colorized Image', use_column_width=True)
127
+
128
+ # Provide a download button for the colorized image
129
+ img_byte_arr = BytesIO()
130
+ Image.fromarray((colorized_image * 255).astype(np.uint8)).save(img_byte_arr, format='JPEG')
131
+ img_byte_arr = img_byte_arr.getvalue()
132
+
133
+ st.download_button(
134
+ label="Download Colorized Image",
135
+ data=img_byte_arr,
136
+ file_name="colorized_image.jpg",
137
+ mime="image/jpeg"
138
+ )
139
+
140
+ st.success("Image processed successfully!")
141
+
142
+ except Exception as e:
143
+ st.error(f"An error occurred: {e}")
144
+ logging.error("Error during inference", exc_info=True)
145
+ else:
146
+ st.error("Please upload an image file.")