import streamlit as st from huggingface_hub import hf_hub_download import torch from PIL import Image from torchvision import transforms from skimage.color import rgb2lab, lab2rgb import numpy as np import matplotlib.pyplot as plt from io import BytesIO # Download the model from Hugging Face Hub repo_id = "Hammad712/GAN-Colorization-Model" model_filename = "generator.pt" model_path = hf_hub_download(repo_id=repo_id, filename=model_filename) # Define the generator model (same architecture as used during training) from fastai.vision.learner import create_body from torchvision.models import resnet34 from fastai.vision.models.unet import DynamicUnet def build_generator(n_input=1, n_output=2, size=256): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") backbone = create_body(resnet34(), pretrained=True, n_in=n_input, cut=-2) G_net = DynamicUnet(backbone, n_output, (size, size)).to(device) return G_net # Initialize and load the model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") G_net = build_generator(n_input=1, n_output=2, size=256) G_net.load_state_dict(torch.load(model_path, map_location=device)) G_net.eval() # Preprocessing function def preprocess_image(img_path): img = Image.open(img_path).convert("RGB") img = transforms.Resize((256, 256), Image.BICUBIC)(img) img = np.array(img) img_to_lab = rgb2lab(img).astype("float32") img_to_lab = transforms.ToTensor()(img_to_lab) L = img_to_lab[[0], ...] / 50. - 1. return L.unsqueeze(0).to(device) # Inference function def colorize_image(img_path, model): L = preprocess_image(img_path) with torch.no_grad(): ab = model(L) L = (L + 1.) * 50. ab = ab * 110. Lab = torch.cat([L, ab], dim=1).permute(0, 2, 3, 1).cpu().numpy() rgb_imgs = [] for img in Lab: img_rgb = lab2rgb(img) rgb_imgs.append(img_rgb) return np.stack(rgb_imgs, axis=0) # Custom CSS def set_css(style): st.markdown(f"", unsafe_allow_html=True) # Combined dark mode styles combined_css = """ .main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; } .block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); } .stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; } .stSpinner { color: #4CAF50; } .title { font-size: 3rem; font-weight: bold; display: flex; align-items: center; justify-content: center; } .colorful-text { background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b); -webkit-background-clip: text; -webkit-text-fill-color: transparent; } .black-white-text { color: black; } .small-input .stTextInput>div>input { height: 2rem; font-size: 0.9rem; } .small-file-uploader .stFileUploader>div>div { height: 2rem; font-size: 0.9rem; } .custom-text { font-size: 1.2rem; color: #feb47b; text-align: center; margin-top: -20px; margin-bottom: 20px; } """ # Streamlit application st.set_page_config(layout="wide") st.markdown(f"", unsafe_allow_html=True) st.markdown('
Image Colorization
', unsafe_allow_html=True) st.markdown('
Convert black and white images to color using AI
', unsafe_allow_html=True) # Input for image URL or file upload with st.expander("Input Options", expanded=True): uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png", "webp"], key="upload_file", help="Upload an image file to convert") # Run inference button if st.button("Colorize"): if uploaded_file is not None: with st.spinner('Processing...'): try: colorized_images = colorize_image(uploaded_file, G_net) colorized_image = colorized_images[0] # Display original and colorized images side by side st.markdown("### Result") col1, col2 = st.columns(2) with col1: st.image(uploaded_file, caption='Original Image', use_column_width=True) with col2: st.image(colorized_image, caption='Colorized Image', use_column_width=True) # Provide a download button for the colorized image img_byte_arr = BytesIO() Image.fromarray((colorized_image * 255).astype(np.uint8)).save(img_byte_arr, format='JPEG') img_byte_arr = img_byte_arr.getvalue() st.download_button( label="Download Colorized Image", data=img_byte_arr, file_name="colorized_image.jpg", mime="image/jpeg" ) st.success("Image processed successfully!") except Exception as e: st.error(f"An error occurred: {e}") logging.error("Error during inference", exc_info=True) else: st.error("Please upload an image file.")