Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,49 +5,91 @@ from transformers import ViTForImageClassification, ViTImageProcessor
|
|
5 |
import logging
|
6 |
import base64
|
7 |
from io import BytesIO
|
|
|
8 |
|
9 |
-
# Setup
|
10 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
11 |
|
12 |
-
# Load the
|
13 |
repository_id = "EnDevSols/brainmri-vit-model"
|
14 |
model = ViTForImageClassification.from_pretrained(repository_id)
|
15 |
feature_extractor = ViTImageProcessor.from_pretrained(repository_id)
|
16 |
|
17 |
-
#
|
18 |
def predict(image):
|
19 |
-
|
|
|
|
|
|
|
|
|
20 |
image = image.convert("RGB")
|
21 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
22 |
-
|
23 |
-
#
|
24 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
25 |
model.to(device)
|
26 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
27 |
-
|
28 |
-
# Perform inference
|
29 |
with torch.no_grad():
|
30 |
outputs = model(**inputs)
|
31 |
-
|
32 |
-
# Get the predicted label
|
33 |
logits = outputs.logits
|
34 |
predicted_label = logits.argmax(-1).item()
|
35 |
-
|
36 |
-
# Map the label to "No" or "Yes"
|
37 |
label_map = {0: "No", 1: "Yes"}
|
38 |
diagnosis = label_map[predicted_label]
|
39 |
-
|
40 |
-
# Return a complete statement
|
41 |
if diagnosis == "Yes":
|
42 |
return "The diagnosis indicates that you have a brain tumor."
|
43 |
else:
|
44 |
return "The diagnosis indicates that you do not have a brain tumor."
|
45 |
|
46 |
-
#
|
47 |
-
def
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
#
|
51 |
combined_css = """
|
52 |
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
|
53 |
.block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); }
|
@@ -68,14 +110,6 @@ combined_css = """
|
|
68 |
.black-white-text {
|
69 |
color: black;
|
70 |
}
|
71 |
-
.small-input .stTextInput>div>input {
|
72 |
-
height: 2rem;
|
73 |
-
font-size: 0.9rem;
|
74 |
-
}
|
75 |
-
.small-file-uploader .stFileUploader>div>div {
|
76 |
-
height: 2rem;
|
77 |
-
font-size: 0.9rem;
|
78 |
-
}
|
79 |
.custom-text {
|
80 |
font-size: 1.2rem;
|
81 |
color: #feb47b;
|
@@ -85,33 +119,51 @@ combined_css = """
|
|
85 |
}
|
86 |
"""
|
87 |
|
88 |
-
# Streamlit
|
89 |
st.set_page_config(layout="wide")
|
90 |
-
|
91 |
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
|
92 |
|
93 |
-
|
94 |
-
st.markdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
-
#
|
97 |
-
uploaded_file = st.file_uploader("Choose an image...", type="jpg")
|
98 |
|
99 |
if uploaded_file is not None:
|
100 |
image = Image.open(uploaded_file)
|
101 |
|
102 |
-
# Resize
|
103 |
resized_image = image.resize((150, 150))
|
104 |
|
105 |
-
# Convert image to base64
|
106 |
buffered = BytesIO()
|
107 |
resized_image.save(buffered, format="JPEG")
|
108 |
img_str = base64.b64encode(buffered.getvalue()).decode()
|
109 |
|
110 |
-
# Display the image in the center
|
111 |
-
st.markdown(
|
|
|
|
|
|
|
112 |
|
113 |
st.write("")
|
114 |
-
st.write("
|
115 |
|
|
|
116 |
diagnosis = predict(image)
|
|
|
117 |
st.write(diagnosis)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import logging
|
6 |
import base64
|
7 |
from io import BytesIO
|
8 |
+
from groq import Groq # Import the Groq client for Deepseek R1 API
|
9 |
|
10 |
+
# ------------------ Setup Logging ------------------
|
11 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
12 |
|
13 |
+
# ------------------ Load the ViT Model ------------------
|
14 |
repository_id = "EnDevSols/brainmri-vit-model"
|
15 |
model = ViTForImageClassification.from_pretrained(repository_id)
|
16 |
feature_extractor = ViTImageProcessor.from_pretrained(repository_id)
|
17 |
|
18 |
+
# ------------------ ViT Inference Function ------------------
|
19 |
def predict(image):
|
20 |
+
"""
|
21 |
+
Given an image, perform inference using the ViT model to detect brain tumor.
|
22 |
+
Returns a human-readable diagnosis string.
|
23 |
+
"""
|
24 |
+
# Convert to RGB and preprocess the image
|
25 |
image = image.convert("RGB")
|
26 |
inputs = feature_extractor(images=image, return_tensors="pt")
|
27 |
+
|
28 |
+
# Set the device (GPU if available)
|
29 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
30 |
model.to(device)
|
31 |
inputs = {k: v.to(device) for k, v in inputs.items()}
|
32 |
+
|
33 |
+
# Perform inference without gradient computation
|
34 |
with torch.no_grad():
|
35 |
outputs = model(**inputs)
|
36 |
+
|
37 |
+
# Get the predicted label and map to a diagnosis
|
38 |
logits = outputs.logits
|
39 |
predicted_label = logits.argmax(-1).item()
|
|
|
|
|
40 |
label_map = {0: "No", 1: "Yes"}
|
41 |
diagnosis = label_map[predicted_label]
|
42 |
+
|
|
|
43 |
if diagnosis == "Yes":
|
44 |
return "The diagnosis indicates that you have a brain tumor."
|
45 |
else:
|
46 |
return "The diagnosis indicates that you do not have a brain tumor."
|
47 |
|
48 |
+
# ------------------ Deepseek R1 Assistance Function ------------------
|
49 |
+
def get_assistance_from_deepseek(diagnosis_text):
|
50 |
+
"""
|
51 |
+
Given the diagnosis from the ViT model, call the Deepseek R1 model via the Groq API
|
52 |
+
to get additional recommendations and next steps.
|
53 |
+
"""
|
54 |
+
# Instantiate the Groq client with the provided API key
|
55 |
+
client = Groq(api_key="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")
|
56 |
+
|
57 |
+
# Construct a prompt that includes the diagnosis and asks for detailed guidance
|
58 |
+
prompt = (
|
59 |
+
f"Based on the following diagnosis: '{diagnosis_text}', please provide next steps and "
|
60 |
+
"recommendations for the patient. Include whether to consult a specialist, if further tests "
|
61 |
+
"are needed, and any other immediate actions or lifestyle recommendations."
|
62 |
+
)
|
63 |
+
|
64 |
+
messages = [
|
65 |
+
{
|
66 |
+
"role": "system",
|
67 |
+
"content": "You are a helpful medical assistant providing guidance after a brain tumor diagnosis."
|
68 |
+
},
|
69 |
+
{"role": "user", "content": prompt}
|
70 |
+
]
|
71 |
+
|
72 |
+
# Create the completion using the Deepseek R1 model (non-streaming for simplicity)
|
73 |
+
completion = client.chat.completions.create(
|
74 |
+
model="deepseek-r1-distill-llama-70b",
|
75 |
+
messages=messages,
|
76 |
+
temperature=0.6,
|
77 |
+
max_completion_tokens=4096,
|
78 |
+
top_p=0.95,
|
79 |
+
stream=False,
|
80 |
+
stop=None,
|
81 |
+
)
|
82 |
+
|
83 |
+
# Extract the response text. (Depending on the API response format, adjust as needed.)
|
84 |
+
try:
|
85 |
+
assistance_text = completion.choices[0].message.content
|
86 |
+
except AttributeError:
|
87 |
+
# Fallback in case the structure is different
|
88 |
+
assistance_text = completion.choices[0].text
|
89 |
+
|
90 |
+
return assistance_text
|
91 |
|
92 |
+
# ------------------ Custom CSS for Styling ------------------
|
93 |
combined_css = """
|
94 |
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
|
95 |
.block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); }
|
|
|
110 |
.black-white-text {
|
111 |
color: black;
|
112 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
.custom-text {
|
114 |
font-size: 1.2rem;
|
115 |
color: #feb47b;
|
|
|
119 |
}
|
120 |
"""
|
121 |
|
122 |
+
# ------------------ Streamlit App Configuration ------------------
|
123 |
st.set_page_config(layout="wide")
|
|
|
124 |
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
|
125 |
|
126 |
+
# App Title and Description
|
127 |
+
st.markdown(
|
128 |
+
'<div class="title"><span class="colorful-text">Brain MRI</span> <span class="black-white-text">Tumor Detection</span></div>',
|
129 |
+
unsafe_allow_html=True
|
130 |
+
)
|
131 |
+
st.markdown(
|
132 |
+
'<div class="custom-text">Upload an MRI image to detect a brain tumor and receive next steps and recommendations.</div>',
|
133 |
+
unsafe_allow_html=True
|
134 |
+
)
|
135 |
|
136 |
+
# ------------------ Image Upload Section ------------------
|
137 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
138 |
|
139 |
if uploaded_file is not None:
|
140 |
image = Image.open(uploaded_file)
|
141 |
|
142 |
+
# Resize image for display purposes
|
143 |
resized_image = image.resize((150, 150))
|
144 |
|
145 |
+
# Convert image to base64 for HTML display
|
146 |
buffered = BytesIO()
|
147 |
resized_image.save(buffered, format="JPEG")
|
148 |
img_str = base64.b64encode(buffered.getvalue()).decode()
|
149 |
|
150 |
+
# Display the uploaded image in the center
|
151 |
+
st.markdown(
|
152 |
+
f"<div style='text-align: center;'><img src='data:image/jpeg;base64,{img_str}' alt='Uploaded Image' width='300'></div>",
|
153 |
+
unsafe_allow_html=True
|
154 |
+
)
|
155 |
|
156 |
st.write("")
|
157 |
+
st.write("Processing the image...")
|
158 |
|
159 |
+
# ------------------ Step 1: Get Diagnosis from the ViT Model ------------------
|
160 |
diagnosis = predict(image)
|
161 |
+
st.markdown("### Diagnosis:")
|
162 |
st.write(diagnosis)
|
163 |
+
|
164 |
+
# ------------------ Step 2: Get Further Assistance from Deepseek R1 ------------------
|
165 |
+
with st.spinner("Fetching additional guidance based on your diagnosis..."):
|
166 |
+
assistance = get_assistance_from_deepseek(diagnosis)
|
167 |
+
|
168 |
+
st.markdown("### Next Steps and Recommendations:")
|
169 |
+
st.write(assistance)
|