Hammad712 commited on
Commit
10fe215
·
verified ·
1 Parent(s): 722f91b

Delete app

Browse files
Files changed (1) hide show
  1. app +0 -49
app DELETED
@@ -1,49 +0,0 @@
1
- import streamlit as st
2
- from PIL import Image
3
- import torch
4
- from transformers import ViTForImageClassification, ViTImageProcessor
5
-
6
- # Load the model and feature extractor from Hugging Face
7
- repository_id = "Hammad712/brainmri-vit-model"
8
- model = ViTForImageClassification.from_pretrained(repository_id)
9
- feature_extractor = ViTImageProcessor.from_pretrained(repository_id)
10
-
11
- # Function to perform inference
12
- def predict(image):
13
- # Convert image to RGB and preprocess it
14
- image = image.convert("RGB")
15
- inputs = feature_extractor(images=image, return_tensors="pt")
16
-
17
- # Move the inputs to the appropriate device
18
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
19
- model.to(device)
20
- inputs = {k: v.to(device) for k, v in inputs.items()}
21
-
22
- # Perform inference
23
- with torch.no_grad():
24
- outputs = model(**inputs)
25
-
26
- # Get the predicted label
27
- logits = outputs.logits
28
- predicted_label = logits.argmax(-1).item()
29
-
30
- # Map the label to "No" or "Yes"
31
- label_map = {0: "No", 1: "Yes"}
32
- return label_map[predicted_label]
33
-
34
- # Streamlit app
35
- st.title("Brain MRI Tumor Detection")
36
- st.write("Upload an MRI image to predict whether it contains a tumor.")
37
-
38
- # File uploader
39
- uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
40
-
41
- if uploaded_file is not None:
42
- # Display the uploaded image
43
- image = Image.open(uploaded_file)
44
- st.image(image, caption="Uploaded Image", use_column_width=True)
45
-
46
- # Perform inference and display the result
47
- st.write("Classifying...")
48
- label = predict(image)
49
- st.write(f"Predicted label: {label}")