Create main.py
Browse files
main.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import zipfile
|
3 |
+
import tempfile
|
4 |
+
|
5 |
+
from fastapi import FastAPI, HTTPException
|
6 |
+
from pydantic import BaseModel
|
7 |
+
|
8 |
+
from langchain_community.vectorstores import FAISS
|
9 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
10 |
+
from langchain_groq import ChatGroq
|
11 |
+
from langchain.chains import RetrievalQA
|
12 |
+
from langchain.prompts import PromptTemplate
|
13 |
+
|
14 |
+
app = FastAPI()
|
15 |
+
|
16 |
+
# === Globals ===
|
17 |
+
llm = None
|
18 |
+
embeddings = None
|
19 |
+
vectorstore = None
|
20 |
+
retriever = None
|
21 |
+
chain = None
|
22 |
+
|
23 |
+
|
24 |
+
class QueryRequest(BaseModel):
|
25 |
+
question: str
|
26 |
+
|
27 |
+
|
28 |
+
def _unpack_faiss(src: str, dest_dir: str) -> str:
|
29 |
+
"""
|
30 |
+
If src is a .zip, unzip it into dest_dir and return
|
31 |
+
the path to the extracted FAISS folder. Otherwise
|
32 |
+
assume src is already a folder and return it.
|
33 |
+
"""
|
34 |
+
if zipfile.is_zipfile(src):
|
35 |
+
with zipfile.ZipFile(src, "r") as zf:
|
36 |
+
zf.extractall(dest_dir)
|
37 |
+
# if there’s exactly one subfolder, use it
|
38 |
+
items = os.listdir(dest_dir)
|
39 |
+
if len(items) == 1 and os.path.isdir(os.path.join(dest_dir, items[0])):
|
40 |
+
return os.path.join(dest_dir, items[0])
|
41 |
+
return dest_dir
|
42 |
+
else:
|
43 |
+
# src is already a directory
|
44 |
+
return src
|
45 |
+
|
46 |
+
|
47 |
+
@app.on_event("startup")
|
48 |
+
def load_components():
|
49 |
+
global llm, embeddings, vectorstore, retriever, chain
|
50 |
+
|
51 |
+
# --- 1) Initialize LLM & Embeddings ---
|
52 |
+
api_key = os.getenv("api_key")
|
53 |
+
llm = ChatGroq(
|
54 |
+
model="meta-llama/llama-4-scout-17b-16e-instruct",
|
55 |
+
temperature=0,
|
56 |
+
max_tokens=1024,
|
57 |
+
api_key=api_key,
|
58 |
+
)
|
59 |
+
|
60 |
+
embeddings = HuggingFaceEmbeddings(
|
61 |
+
model_name="intfloat/multilingual-e5-large",
|
62 |
+
model_kwargs={"device": "cpu"},
|
63 |
+
encode_kwargs={"normalize_embeddings": True},
|
64 |
+
)
|
65 |
+
|
66 |
+
# --- 2) Load & merge two FAISS indexes ---
|
67 |
+
# Paths to your two vectorstores (could be .zip or folders)
|
68 |
+
src1 = "faiss_index.zip"
|
69 |
+
src2 = "faiss_index_extra.zip"
|
70 |
+
|
71 |
+
# Temporary dirs for extraction
|
72 |
+
tmp1 = tempfile.mkdtemp()
|
73 |
+
tmp2 = tempfile.mkdtemp()
|
74 |
+
|
75 |
+
# Unpack and load each
|
76 |
+
path1 = _unpack_faiss(src1, tmp1)
|
77 |
+
vs1 = FAISS.load_local(path1, embeddings, allow_dangerous_deserialization=True)
|
78 |
+
|
79 |
+
path2 = _unpack_faiss(src2, tmp2)
|
80 |
+
vs2 = FAISS.load_local(path2, embeddings, allow_dangerous_deserialization=True)
|
81 |
+
|
82 |
+
# Merge vs2 into vs1
|
83 |
+
vs1.merge_from(vs2)
|
84 |
+
|
85 |
+
# Assign the merged store to our global
|
86 |
+
vectorstore = vs1
|
87 |
+
|
88 |
+
# --- 3) Build retriever & QA chain ---
|
89 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
|
90 |
+
|
91 |
+
prompt = PromptTemplate(
|
92 |
+
template="""
|
93 |
+
You are an expert assistant on Islamic knowledge.
|
94 |
+
Use **only** the information in the “Retrieved context” to answer the user’s question.
|
95 |
+
Do **not** add any outside information, personal opinions, or conjecture—if the answer is not contained in the context, reply with “لا أعلم”.
|
96 |
+
Be concise, accurate, and directly address the user’s question.
|
97 |
+
|
98 |
+
Retrieved context:
|
99 |
+
{context}
|
100 |
+
|
101 |
+
User’s question:
|
102 |
+
{question}
|
103 |
+
|
104 |
+
Your response:
|
105 |
+
""",
|
106 |
+
input_variables=["context", "question"],
|
107 |
+
)
|
108 |
+
|
109 |
+
chain = RetrievalQA.from_chain_type(
|
110 |
+
llm=llm,
|
111 |
+
chain_type="stuff",
|
112 |
+
retriever=retriever,
|
113 |
+
return_source_documents=False,
|
114 |
+
chain_type_kwargs={"prompt": prompt},
|
115 |
+
)
|
116 |
+
|
117 |
+
print("✅ Loaded and merged both FAISS indexes, QA chain is ready.")
|
118 |
+
|
119 |
+
|
120 |
+
@app.get("/")
|
121 |
+
def root():
|
122 |
+
return {"message": "Arabic Hadith Finder API is up..."}
|
123 |
+
|
124 |
+
|
125 |
+
@app.post("/query")
|
126 |
+
def query(request: QueryRequest):
|
127 |
+
try:
|
128 |
+
result = chain.invoke({"query": request.question})
|
129 |
+
return {"answer": result["result"]}
|
130 |
+
except Exception as e:
|
131 |
+
raise HTTPException(status_code=500, detail=str(e))
|