Update main.py
Browse files
main.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import zipfile
|
|
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
|
@@ -9,6 +10,13 @@ from langchain_groq import ChatGroq
|
|
9 |
from langchain.chains import RetrievalQA
|
10 |
from langchain.prompts import PromptTemplate
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
app = FastAPI()
|
13 |
|
14 |
# === Globals ===
|
@@ -25,60 +33,55 @@ class QueryRequest(BaseModel):
|
|
25 |
def load_components():
|
26 |
global llm, embeddings, vectorstore, retriever, chain
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
# 4) Create retriever & QA chain
|
76 |
-
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
77 |
-
prompt = PromptTemplate(
|
78 |
-
template="""
|
79 |
You are an expert assistant on Islamic knowledge.
|
80 |
-
Use **only** the information in the “Retrieved context” to answer
|
81 |
-
Do **not** add any outside information, personal opinions, or conjecture—if the answer is not contained in the context, reply with
|
82 |
Be concise, accurate, and directly address the user’s question.
|
83 |
|
84 |
Retrieved context:
|
@@ -89,16 +92,20 @@ User’s question:
|
|
89 |
|
90 |
Your response:
|
91 |
""",
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
@app.get("/")
|
104 |
def root():
|
@@ -107,7 +114,10 @@ def root():
|
|
107 |
@app.post("/query")
|
108 |
def query(request: QueryRequest):
|
109 |
try:
|
|
|
110 |
result = chain.invoke({"query": request.question})
|
111 |
-
|
|
|
112 |
except Exception as e:
|
113 |
-
|
|
|
|
1 |
import os
|
2 |
import zipfile
|
3 |
+
import logging
|
4 |
from fastapi import FastAPI, HTTPException
|
5 |
from pydantic import BaseModel
|
6 |
|
|
|
10 |
from langchain.chains import RetrievalQA
|
11 |
from langchain.prompts import PromptTemplate
|
12 |
|
13 |
+
# Configure logging
|
14 |
+
logging.basicConfig(
|
15 |
+
level=logging.INFO,
|
16 |
+
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s"
|
17 |
+
)
|
18 |
+
logger = logging.getLogger(__name__)
|
19 |
+
|
20 |
app = FastAPI()
|
21 |
|
22 |
# === Globals ===
|
|
|
33 |
def load_components():
|
34 |
global llm, embeddings, vectorstore, retriever, chain
|
35 |
|
36 |
+
try:
|
37 |
+
# 1) Init LLM & Embeddings
|
38 |
+
llm = ChatGroq(
|
39 |
+
model="meta-llama/llama-4-scout-17b-16e-instruct",
|
40 |
+
temperature=0,
|
41 |
+
max_tokens=1024,
|
42 |
+
api_key=os.getenv("API_KEY"),
|
43 |
+
)
|
44 |
+
embeddings = HuggingFaceEmbeddings(
|
45 |
+
model_name="intfloat/multilingual-e5-large",
|
46 |
+
model_kwargs={"device": "cpu"},
|
47 |
+
encode_kwargs={"normalize_embeddings": True},
|
48 |
+
)
|
49 |
+
|
50 |
+
# 2) Unzip & Load both FAISS vectorstores
|
51 |
+
for zip_name, dir_name in [("faiss_index.zip", "faiss_index"), ("faiss_index(1).zip", "faiss_index_extra")]:
|
52 |
+
if not os.path.exists(dir_name):
|
53 |
+
with zipfile.ZipFile(zip_name, 'r') as z:
|
54 |
+
z.extractall(dir_name)
|
55 |
+
logger.info(f"Unzipped {zip_name} to {dir_name}.")
|
56 |
+
else:
|
57 |
+
logger.info(f"Directory {dir_name} already exists.")
|
58 |
+
|
59 |
+
vs1 = FAISS.load_local(
|
60 |
+
"faiss_index",
|
61 |
+
embeddings,
|
62 |
+
allow_dangerous_deserialization=True
|
63 |
+
)
|
64 |
+
logger.info("FAISS index 1 loaded.")
|
65 |
+
|
66 |
+
vs2 = FAISS.load_local(
|
67 |
+
"faiss_index_extra",
|
68 |
+
embeddings,
|
69 |
+
allow_dangerous_deserialization=True
|
70 |
+
)
|
71 |
+
logger.info("FAISS index 2 loaded.")
|
72 |
+
|
73 |
+
# 3) Merge them
|
74 |
+
vs1.merge_from(vs2)
|
75 |
+
vectorstore = vs1
|
76 |
+
logger.info("Merged FAISS indexes into a single vectorstore.")
|
77 |
+
|
78 |
+
# 4) Create retriever & QA chain
|
79 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 3})
|
80 |
+
prompt = PromptTemplate(
|
81 |
+
template="""
|
|
|
|
|
|
|
|
|
|
|
82 |
You are an expert assistant on Islamic knowledge.
|
83 |
+
Use **only** the information in the “Retrieved context” to answer general questions related to Islam.
|
84 |
+
Do **not** add any outside information, personal opinions, or conjecture—if the answer is not contained in the context, reply with "I don't know".
|
85 |
Be concise, accurate, and directly address the user’s question.
|
86 |
|
87 |
Retrieved context:
|
|
|
92 |
|
93 |
Your response:
|
94 |
""",
|
95 |
+
input_variables=["context", "question"],
|
96 |
+
)
|
97 |
+
chain = RetrievalQA.from_chain_type(
|
98 |
+
llm=llm,
|
99 |
+
chain_type="stuff",
|
100 |
+
retriever=retriever,
|
101 |
+
return_source_documents=False,
|
102 |
+
chain_type_kwargs={"prompt": prompt},
|
103 |
+
)
|
104 |
+
logger.info("QA chain ready.")
|
105 |
+
|
106 |
+
except Exception as e:
|
107 |
+
logger.error("Error loading components", exc_info=True)
|
108 |
+
raise
|
109 |
|
110 |
@app.get("/")
|
111 |
def root():
|
|
|
114 |
@app.post("/query")
|
115 |
def query(request: QueryRequest):
|
116 |
try:
|
117 |
+
logger.info(f"Received query: %s", request.question)
|
118 |
result = chain.invoke({"query": request.question})
|
119 |
+
logger.info("Query processed successfully.")
|
120 |
+
return {"answer": result.get("result")}
|
121 |
except Exception as e:
|
122 |
+
logger.error("Error processing query", exc_info=True)
|
123 |
+
raise HTTPException(status_code=500, detail="Internal server error.")
|