import os import zipfile import tempfile from fastapi import FastAPI, HTTPException from pydantic import BaseModel from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings from langchain_groq import ChatGroq from langchain.chains import RetrievalQA from langchain.prompts import PromptTemplate app = FastAPI() # === Globals === llm = None embeddings = None vectorstore = None retriever = None chain = None class QueryRequest(BaseModel): question: str def _unpack_faiss(src_path: str, extract_to: str) -> str: """ If src_path is a .zip, unzip to extract_to and return the directory containing the .faiss file. If it's already a folder, just return it. """ # 1) ZIP case if src_path.lower().endswith(".zip"): if not os.path.isfile(src_path): raise FileNotFoundError(f"Could not find zip file: {src_path}") with zipfile.ZipFile(src_path, "r") as zf: zf.extractall(extract_to) # walk until we find any .faiss file for root, _, files in os.walk(extract_to): if any(fn.endswith(".faiss") for fn in files): return root raise RuntimeError(f"No .faiss index found inside {src_path}") # 2) directory case if os.path.isdir(src_path): return src_path raise RuntimeError(f"Path is neither a .zip nor a directory: {src_path}") @app.on_event("startup") def load_components(): global llm, embeddings, vectorstore, retriever, chain # --- 1) Init LLM & Embeddings --- llm = ChatGroq( model="meta-llama/llama-4-scout-17b-16e-instruct", temperature=0, max_tokens=1024, api_key=os.getenv("api_key"), ) embeddings = HuggingFaceEmbeddings( model_name="intfloat/multilingual-e5-large", model_kwargs={"device": "cpu"}, encode_kwargs={"normalize_embeddings": True}, ) # --- 2) Load & merge two FAISS indexes --- src1 = "faiss_index.zip" src2 = "faiss_index_extra.zip" # Use TemporaryDirectory objects so they stick around until program exit tmp1 = tempfile.TemporaryDirectory() tmp2 = tempfile.TemporaryDirectory() # Unpack & locate dir1 = _unpack_faiss(src1, tmp1.name) dir2 = _unpack_faiss(src2, tmp2.name) # Load them vs1 = FAISS.load_local(dir1, embeddings, allow_dangerous_deserialization=True) vs2 = FAISS.load_local(dir2, embeddings, allow_dangerous_deserialization=True) # Merge vs2 into vs1 vs1.merge_from(vs2) vectorstore = vs1 # --- 3) Build retriever & QA chain --- retriever = vectorstore.as_retriever(search_kwargs={"k": 5}) prompt = PromptTemplate( template=""" You are an expert assistant on Islamic knowledge. Use **only** the information in the “Retrieved context” to answer the user’s question. Do **not** add any outside information, personal opinions, or conjecture—if the answer is not contained in the context, reply with “لا أعلم”. Be concise, accurate, and directly address the user’s question. Retrieved context: {context} User’s question: {question} Your response: """, input_variables=["context", "question"], ) chain = RetrievalQA.from_chain_type( llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=False, chain_type_kwargs={"prompt": prompt}, ) print("✅ Loaded & merged both FAISS indexes, QA chain ready.") @app.get("/") def root(): return {"message": "Arabic Hadith Finder API is up..."} @app.post("/query") def query(request: QueryRequest): try: result = chain.invoke({"query": request.question}) return {"answer": result["result"]} except Exception as e: raise HTTPException(status_code=500, detail=str(e))