Spaces:
Sleeping
Sleeping
import streamlit as st | |
import tensorflow as tf | |
import numpy as np | |
import cv2 | |
from huggingface_hub import hf_hub_download | |
from tensorflow.keras.models import load_model | |
from io import BytesIO | |
from PIL import Image | |
import requests | |
# Authenticate and download model from Hugging Face | |
repo_id = "Hammad712/closed_eye_detection" | |
filename = "Closed_Eye_Detection_98.h5" | |
model_path = hf_hub_download(repo_id=repo_id, filename=filename) | |
# Load the downloaded model | |
model = load_model(model_path) | |
# Set image dimensions | |
img_height, img_width = 150, 150 | |
# Custom CSS | |
def set_css(style): | |
st.markdown(f"<style>{style}</style>", unsafe_allow_html=True) | |
combined_css = """ | |
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; } | |
.block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); } | |
.stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; } | |
.stSpinner { color: #4CAF50; } | |
.title { | |
font-size: 3rem; | |
font-weight: bold; | |
display: flex; | |
align-items: center; | |
justify-content: center; | |
} | |
.colorful-text { | |
background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b); | |
-webkit-background-clip: text; | |
-webkit-text-fill-color: transparent; | |
} | |
.black-white-text { | |
color: black; | |
} | |
.small-input .stTextInput>div>input { | |
height: 2rem; | |
font-size: 0.9rem; | |
} | |
.small-file-uploader .stFileUploader>div>div { | |
height: 2rem; | |
font-size: 0.9rem; | |
} | |
.custom-text { | |
font-size: 1.2rem; | |
color: #feb47b; | |
text-align: center; | |
margin-top: -20px; | |
margin-bottom: 20px; | |
} | |
""" | |
# Streamlit application | |
st.set_page_config(layout="wide") | |
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True) | |
st.markdown('<div class="title"><span class="colorful-text">Eye</span> <span class="black-white-text">Detection Model</span></div>', unsafe_allow_html=True) | |
st.markdown('<div class="custom-text">Upload an image or provide a URL to predict whether the eyes are open or closed.</div>', unsafe_allow_html=True) | |
# Input for image URL or path | |
with st.expander("Input Options", expanded=True): | |
url = st.text_input("Enter image URL", "") | |
uploaded_file = st.file_uploader("Or upload an image", type=["jpg", "jpeg", "png"]) | |
def load_image_from_url(url): | |
response = requests.get(url) | |
img = Image.open(BytesIO(response.content)).convert('RGB') | |
return np.array(img) | |
if uploaded_file is not None or url: | |
if uploaded_file is not None: | |
# Read the uploaded image | |
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8) | |
image = cv2.imdecode(file_bytes, 1) | |
elif url: | |
# Read the image from URL | |
image = load_image_from_url(url) | |
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) | |
# Resize and preprocess the image | |
resized_image = cv2.resize(image, (img_height, img_width)) | |
input_image = resized_image.reshape((1, img_height, img_width, 3)) / 255.0 | |
# Perform inference | |
predictions = model.predict(input_image) | |
prediction = predictions[0][0] | |
def get_label(prediction): | |
return "Open Eye" if prediction >= 0.5 else "Closed Eye" | |
label = get_label(prediction) | |
# Display the image and prediction | |
st.image(image, channels="BGR", caption='Uploaded Image' if uploaded_file is not None else 'Image from URL') | |
st.markdown(f"### Prediction: {prediction:.2f}, Label: {label}") | |
# Provide a download button for the uploaded image (optional) | |
img_byte_arr = BytesIO() | |
img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) | |
img.save(img_byte_arr, format='JPEG') | |
img_byte_arr = img_byte_arr.getvalue() | |
st.download_button( | |
label="Download Image", | |
data=img_byte_arr, | |
file_name="processed_image.jpg", | |
mime="image/jpeg" | |
) | |