Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow as tf
|
3 |
+
import numpy as np
|
4 |
+
import cv2
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
from tensorflow.keras.models import load_model
|
7 |
+
from io import BytesIO
|
8 |
+
|
9 |
+
# Authenticate and download model from Hugging Face
|
10 |
+
repo_id = "Hammad712/closed_eye_detection"
|
11 |
+
filename = "Closed_Eye_Detection_98.h5"
|
12 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
13 |
+
|
14 |
+
# Load the downloaded model
|
15 |
+
model = load_model(model_path)
|
16 |
+
|
17 |
+
# Set image dimensions
|
18 |
+
img_height, img_width = 150, 150
|
19 |
+
|
20 |
+
# Custom CSS
|
21 |
+
def set_css(style):
|
22 |
+
st.markdown(f"<style>{style}</style>", unsafe_allow_html=True)
|
23 |
+
|
24 |
+
combined_css = """
|
25 |
+
.main, .sidebar .sidebar-content { background-color: #1c1c1c; color: #f0f2f6; }
|
26 |
+
.block-container { padding: 1rem 2rem; background-color: #333; border-radius: 10px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.5); }
|
27 |
+
.stButton>button, .stDownloadButton>button { background: linear-gradient(135deg, #ff7e5f, #feb47b); color: white; border: none; padding: 10px 24px; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; }
|
28 |
+
.stSpinner { color: #4CAF50; }
|
29 |
+
.title {
|
30 |
+
font-size: 3rem;
|
31 |
+
font-weight: bold;
|
32 |
+
display: flex;
|
33 |
+
align-items: center;
|
34 |
+
justify-content: center;
|
35 |
+
}
|
36 |
+
.colorful-text {
|
37 |
+
background: -webkit-linear-gradient(135deg, #ff7e5f, #feb47b);
|
38 |
+
-webkit-background-clip: text;
|
39 |
+
-webkit-text-fill-color: transparent;
|
40 |
+
}
|
41 |
+
.black-white-text {
|
42 |
+
color: black;
|
43 |
+
}
|
44 |
+
.small-input .stTextInput>div>input {
|
45 |
+
height: 2rem;
|
46 |
+
font-size: 0.9rem;
|
47 |
+
}
|
48 |
+
.small-file-uploader .stFileUploader>div>div {
|
49 |
+
height: 2rem;
|
50 |
+
font-size: 0.9rem;
|
51 |
+
}
|
52 |
+
.custom-text {
|
53 |
+
font-size: 1.2rem;
|
54 |
+
color: #feb47b;
|
55 |
+
text-align: center;
|
56 |
+
margin-top: -20px;
|
57 |
+
margin-bottom: 20px;
|
58 |
+
}
|
59 |
+
"""
|
60 |
+
|
61 |
+
# Streamlit application
|
62 |
+
st.set_page_config(layout="wide")
|
63 |
+
|
64 |
+
st.markdown(f"<style>{combined_css}</style>", unsafe_allow_html=True)
|
65 |
+
|
66 |
+
st.markdown('<div class="title"><span class="colorful-text">Eye</span> <span class="black-white-text">Detection Model</span></div>', unsafe_allow_html=True)
|
67 |
+
st.markdown('<div class="custom-text">Upload an image to predict whether the eyes are open or closed.</div>', unsafe_allow_html=True)
|
68 |
+
|
69 |
+
# Input for image URL or path
|
70 |
+
with st.expander("Input Options", expanded=True):
|
71 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
72 |
+
|
73 |
+
if uploaded_file is not None:
|
74 |
+
# Read the uploaded image
|
75 |
+
file_bytes = np.asarray(bytearray(uploaded_file.read()), dtype=np.uint8)
|
76 |
+
image = cv2.imdecode(file_bytes, 1)
|
77 |
+
|
78 |
+
# Resize and preprocess the image
|
79 |
+
resized_image = cv2.resize(image, (img_height, img_width))
|
80 |
+
input_image = resized_image.reshape((1, img_height, img_width, 3)) / 255.0
|
81 |
+
|
82 |
+
# Perform inference
|
83 |
+
predictions = model.predict(input_image)
|
84 |
+
prediction = predictions[0][0]
|
85 |
+
|
86 |
+
def get_label(prediction):
|
87 |
+
return "Open Eye" if prediction >= 0.5 else "Closed Eye"
|
88 |
+
|
89 |
+
label = get_label(prediction)
|
90 |
+
|
91 |
+
# Display the image and prediction
|
92 |
+
st.image(image, channels="BGR", caption='Uploaded Image')
|
93 |
+
st.markdown(f"### Prediction: {prediction:.2f}, Label: {label}")
|
94 |
+
|
95 |
+
# Provide a download button for the uploaded image (optional)
|
96 |
+
img_byte_arr = BytesIO()
|
97 |
+
img = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
98 |
+
img.save(img_byte_arr, format='JPEG')
|
99 |
+
img_byte_arr = img_byte_arr.getvalue()
|
100 |
+
|
101 |
+
st.download_button(
|
102 |
+
label="Download Image",
|
103 |
+
data=img_byte_arr,
|
104 |
+
file_name="uploaded_image.jpg",
|
105 |
+
mime="image/jpeg"
|
106 |
+
)
|