Hammad712 commited on
Commit
7f8c2eb
·
verified ·
1 Parent(s): 1312b75

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +52 -0
app.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import ViTForImageClassification, ViTFeatureExtractor
3
+ from PIL import Image
4
+ import torch
5
+ import matplotlib.pyplot as plt
6
+
7
+ # Define the repository ID
8
+ repo_id = "Hammad712/5-Flower-Types-Classification-VIT-Model"
9
+
10
+ # Load the model and feature extractor
11
+ model = ViTForImageClassification.from_pretrained(repo_id)
12
+ feature_extractor = ViTFeatureExtractor.from_pretrained(repo_id)
13
+
14
+ # Define the class names dictionary
15
+ class_names = {0: 'Lilly', 1: 'Lotus', 2: 'Orchid', 3: 'Sunflower', 4: 'Tulip'}
16
+
17
+ # Define the inference function
18
+ def predict(image):
19
+ inputs = feature_extractor(images=image, return_tensors="pt")
20
+ with torch.no_grad():
21
+ outputs = model(**inputs)
22
+ logits = outputs.logits
23
+ probabilities = torch.nn.functional.softmax(logits, dim=-1).squeeze().tolist()
24
+ predicted_class_idx = logits.argmax(-1).item()
25
+ predicted_class_name = class_names[predicted_class_idx]
26
+ return probabilities, predicted_class_name
27
+
28
+ # Streamlit app
29
+ st.title("Flower Type Classification")
30
+ st.write("Upload an image of a flower to classify its type.")
31
+
32
+ # Upload image
33
+ uploaded_file = st.sidebar.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
34
+
35
+ if uploaded_file is not None:
36
+ # Display the uploaded image
37
+ image = Image.open(uploaded_file).convert("RGB")
38
+ st.image(image, caption='Uploaded Image.', use_column_width=True)
39
+
40
+ # Predict the class of the image
41
+ probabilities, predicted_class = predict(image)
42
+
43
+ # Display the probabilities in a bar chart
44
+ fig, ax = plt.subplots()
45
+ ax.bar(class_names.values(), probabilities)
46
+ ax.set_ylabel('Probability')
47
+ ax.set_xlabel('Class')
48
+ ax.set_title('Class Probabilities')
49
+ st.pyplot(fig)
50
+
51
+ # Display the predicted class
52
+ st.write(f"Predicted class: **{predicted_class}**")